** WARNING ** WARNING ** WARNING ** This document is intended for informational purposes only. Users are cautioned that Caltrans does not assume any liability or responsibility based on these electronic files or for any defective or incomplete copying, exerpting, scanning, faxing or downloading of the contract documents. As always, for the official paper versions of the bidders and non-bidder packages, write to the California Department of Transportation, Plans and Bid Documents, Room 0200, P.O. Box 942874, Sacramento, CA 94272-0001, telephone (916) 654-4490 or fax (916) 654-7028. Office hours are 7:30 a.m. to 4:15 p.m. When ordering bidder or non-bidder packages it is important that you include a telephone and fax number, P.O. Box and street address so that you can receive addenda. Note: Addenda information is NOT included with the electronic documents available via electronic file transfer. Only bidder or non-bidder package holders listed with the Caltrans Plans and Bid Documents section as described above will receive addenda information. # STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION NOTICE TO CONTRACTORS AND ## **SPECIAL PROVISIONS** #### FOR CONSTRUCTION ON STATE HIGHWAY IN SANTA CRUZ COUNTY NEAR BEN LOMOND AT 0.64 KM SOUTH OF WESTERN AVENUE | | DISTRICT 05, ROUTE 9 | | |--------------|--|------------| | For Use in C | Connection with Standard Specifications Dated JULY 1999, Standard Pl
JULY 1999, and Labor Surcharge and Equipment Rental Rates. | lans Dated | | | | | (INFORMAL BIDS CONTRACT) CONTRACT NO. 05-0H6304 05-SCr-9-17.4 Bids Open: July 30, 2002 Dated: July 15, 2002 # IMPORTANT SPECIAL NOTICES *********************************** - Direct bidding inquiries to the District Construction Office (Telephone: 805-549-3481) - The bidder's attention is directed to the following special requirements for this project concerning submission of DVBE information, award and execution of contract, and beginning of work: DVBE information shall be submitted with the bid proposal. (See Section 2-1.04 of the special provisions.) The evaluation of the effort to meet the DVBE goal will be based on the information provided with the bid proposal. If the goal was not met, Caltrans' determination of good faith effort, based on the information provided with the bid, will be made on the day following the bid opening and the decision will be final. All subcontractors listed in the DVBE Information shall be available, by phone, on the day following the bid opening. The DVBE information shall include all DVBE partners. It is anticipated that this contract will be awarded within seven days after the bid opening. (See Section 3 of the special provisions.) If the Bidder submits cash or a cashier's check or a certified check as the form of bidder's security (see Section 2-1.07 of the Standard Specifications), the Bidder shall also include with the bid submittal a signed and notarized affidavit from an admitted surety insurer that contract bonds, as required by Section 3-1.02, "Contract Bonds," of the Standard Specifications, will be provided within the specified time for executing and returning the contract for approval. If the bidder claims a mistake was made in his bid, the bidder shall give the Department written notice within 48-hours, not including Saturdays, Sundays and legal holidays, after the opening of bids of the alleged mistake in lieu of the 5 days specified in Section 2-1.095, "Relief of Bidders," in the Standard Specifications. (See Section 2-1.01 of the special provisions.) Caltrans' FAX number for submitting this information is (916) 227-6282. Such information shall be submitted "Attention Office Engineer." The Contractor may begin work after award of the contract at his own risk. The contract work shall be completed before the expiration of 70 working days **beginning at 12:01 a.m. of the day after the day of contract award.** (See Section 4 of the special provisions). The contract shall be signed by the successful bidder and shall be received with contract bonds by the Division of Office Engineer within **4 days**, not including Saturdays, Sundays and legal holidays, after the bidder has received notice that the contract has been awarded. (See Section 3 of the special provisions.) If properly executed by the bidder, it is anticipated the contract will be approved within 24 hours of when the executed contract and contract bonds are received by the Department. #### Payment Bonds Attention is directed to Section 5 of the Special Provisions, regarding contract bonds. The payment bond shall be in a sum not less than one hundred percent of the total amount payable by the terms of the contract. • Attention is directed to Section 1, "Specifications and Plans," of these special provisions for Amendments To July 1999 Standard Specifications. Amendments to the various sections of the Standard Specification have been consolidated into Section 1 and dated to reflect the most recent revision. ## TABLE OF CONTENTS | NOTICE TO CONTRACTORS | 1 | |--|----| | COPY OF ENGINEER'S ESTIMATE | 3 | | SPECIAL PROVISIONS | 6 | | SECTION 1. SPECIFICATIONS AND PLANS | 6 | | AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS | 6 | | 2-1.01 GENERAL | | | 2-1.02 DISABLED VETERAN BUSINESS ENTERPRISE (DVBE) | 42 | | 2-1.03 DVBE GOAL FOR THIS PROJECT | | | 2-1.04 SUBMISSION OF DVBE INFORMATION | | | 2-1.05 SMALL BUSINESS PREFERENCE | | | 2-1.06 CALIFORNIA COMPANY PREFERENCE | | | SECTION 3. AWARD AND EXECUTION OF CONTRACT | | | SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION AND LIQUIDATED DAMAGES | | | SECTION 5. GENERAL | | | SECTION 5-1. MISCELLANEOUS | 46 | | 5-1.01 PLANS AND WORKING DRAWINGS | 46 | | 5-1.011 EXAMINATION OF PLANS, SPECIFICATIONS, CONTRACT, AND SITE OF WORK | | | 5-1.012 DIFFERING SITE CONDITIONS | | | 5-1.013 LINES AND GRADES | | | 5-1.015 LABORATORY | | | 5-1.017 CONTRACT BONDS | | | 5-1.019 COST REDUCTION INCENTIVE | | | 5-1.02 LABOR NONDISCRIMINATION | | | 5-1.022 PAYMENT OF WITHHELD FUNDS. | | | 5-1.03 INTEREST ON PAYMENTS. | | | 5-1.031 FINAL PAYMENT AND CLAIMS | | | 5-1.04 PUBLIC SAFETY | | | 5-1.05 TESTING | | | 5-1.06 REMOVAL OF ASBESTOS AND HAZARDOUS SUBSTANCES | | | 5-1.07 YEAR 2000 COMPLIANCE | | | 5-1.08 SUBCONTRACTOR AND DVBE RECORDS | | | 5-1.086 PERFORMANCE OF DVBE SUBCONTRACTORS AND SUPPLIERS | | | 5-1.09 SUBCONTRACTING. | | | 5-1.10 PROMPT PROGRESS PAYMENT TO SUBCONTRACTORS | | | 5-1.103 RECORDS | | | 5-1.11 AREAS FOR CONTRACTOR'S USE | | | 5-1.12 ENVIRONMENTALLY SENSITIVE AREA | 52 | | 5-1.13 PAYMENTS | | | 5-1.14 FIRE PLAN | | | SECTION 6. (BLANK) | | | SECTION 7. (BLANK) | | | SECTION 8. MATERIALS | | | SECTION 8-1. MISCELLANEOUS | | | 8-1.01 SUBSTITUTION OF NON-METRIC MATERIALS AND PRODUCTS | | | 8-1.02 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS | | | 8-1.03 ASPHALT | | | 8-1.04 ENGINEERING FABRICS | | | SECTION 8-2. CONCRETE | | | 8-2.01 PORTLAND CEMENT CONCRETE | | | SECTION 8-3. WELDING | | | 8-3.01 WELDING | | | GENERAL | | | WELDING QUALITY CONTROL | | | PAYMENT | | | | | | SECTION 9. DESCRIPTION OF BRIDGE WORK | | |--|----| | SECTION 10. CONSTRUCTION DETAILS | | | SECTION 10-1. GENERAL | | | 10-1.01 ORDER OF WORK | | | 10-1.02 WATER POLLUTION CONTROL | 73 | | WATER POLLUTION CONTROL PROGRAM PREPARATION, APPROVAL AND UPDATES | | | WPCP IMPLEMENTATION | | | MAINTENANCE | | | PAYMENT | | | 10-1.03 TEMPORARY SILT FENCE | | | MATERIALS | | | INSTALLATION
MEASUREMENT AND PAYMENT | | | | | | 10-1.04 TEMPORARY FENCE (TYPE ESA) | | | 10-1.05 PRESERVATION OF PROPERTY | | | 10-1.00 PROGRESS SCHEDULE | | | 10-1.08 MOBILIZATION | | | 10-1.09 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES | | | 10-1.10 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES | | | 10-1.10 CONSTRUCTION AREA SIGNS | | | 10-1.11 MAINTAINING TRAFFIC 10-1.12 CLOSURE REQUIREMENTS AND CONDITIONS | | | CLOSURE SCHEDULE | | | CONTINGENCY PLAN | | | LATE REOPENING OF CLOSURES | | | COMPENSATION | | | 10-1.13 CONSTRUCTION ZONE ENHANCED ENFORCEMENT | 01 | | 10-1.14 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE | | | STATIONARY LANE CLOSURE | | | MOVING LANE CLOSURE | | | PAYMENT | | | 10-1.15 TEMPORARY PAVEMENT DELINEATION | | | GENERAL GENERAL | | | TEMPORARY LANELINE AND CENTERLINE DELINEATION | | | TEMPORARY TRAFFIC STRIPE (TAPE) | | | TEMPORARY PAVEMENT MARKING (TAPE) | | | MEASUREMENT AND PAYMENT | | | 10-1.16 BARRICADE | | | 10-1.17 PORTABLE CHANGEABLE MESSAGE SIGN | | | 10-1.17 TOKTABLE CHANGEABLE MESSAGE SIGN | | | OPERATION | | | MAINTAINING TEMPORARY SIGNAL SYSTEM | 85 | | SALVAGING SIGNAL SYSTEM | | | PAYMENT | | | 10-1.19 TEMPORARY RAILING | | | 10-1.20 CHANNELIZER | | | 10-1.21 TEMPORARY CRASH CUSHION (ADIEM). | | | 10-1.22 TEMPORARY CRASH CUSHION MODULE | | | 10-1.23 EXISTING HIGHWAY FACILITIES | | | REMOVE METAL BEAM GUARD RAILING. | | | SALVAGE CONSTRUCTION AREA SIGN PANEL | | | SALVAGE CONCRETE BARRIER (TYPE K) | | | COLD PLANE ASPHALT CONCRETE PAVEMENT | | | REMOVE CRIB WALL | | | CURED-IN-PLACE PIPE | | | 10-1.24 EARTHWORK | | | GEOCOMPOSITE DRAIN | | | 10-1.25 SOIL NAIL WALL EARTHWORK | | | WODVING DD AWINGS | 0/ | | EXCAVATION | 94 | |--|-----| | MEASUREMENT AND PAYMENT | 95 | | 10-1.26 SOIL NAIL ASSEMBLY | | | WORKING DRAWINGS | 96 | | MATERIALS | 96 | | CONSTRUCTION | 98 | | TESTING | 99 | | MEASUREMENT | 100 | | PAYMENT | | | 10-1.27 SHOULDER BACKING | 100 | | 10-1.28 FOG SEAL COAT | 101 | | 10-1.29 EROSION CONTROL (BLANKET) | | | MATERIALS | | | APPLICATION | 102 | | MEASUREMENT AND PAYMENT | | | 10-1.30 ASPHALT CONCRETE | 103 | | 10-1.31 REPLACE ASPHALT CONCRETE SURFACING | | | 10-1.32 PILING | | | GENERAL | | | CAST-IN-DRILLED-HOLE CONCRETE PILES | | | MEASUREMENT AND PAYMENT (PILING) | | |
10-1.33 CONCRETE STRUCTURES | | | FALSEWORK | | | DECK CRACK TREATMENT | | | 10-1.34 REINFORCEMENT | | | ULTIMATE BUTT SPLICES | | | MEASUREMENT AND PAYMENT | | | 10-1.35 SHOTCRETE | | | PRECONSTRUCTION REQUIREMENTS | | | PLACING | | | TESTING AND ACCEPTANCE | | | MEASUREMENT AND PAYMENT | | | 10-1.36 PREPARE AND STAIN CONCRETE | | | 10-1.37 SLOPE PAVING | | | 10-1.38 MISCELLANEOUS IRON AND STEEL | | | 10-1.39 MARKERS AND DELINEATORS | | | 10-1.40 METAL BEAM GUARD RAILING | | | TERMINAL SYSTEM (TYPE SRT) | | | 10-1.42 THERMOPLASTIC TRAFFIC STRIPE | | | 10-1.42 THERMOPLASTIC TRAFFIC STRIPE | | | SECTION 10-2. HIGHWAY PLANTING | | | 10-2.01 GENERAL | | | 10-2.01 GENERAL
10-2.02 EXISTING HIGHWAY PLANTING | | | PRUNE EXISTING PLANTS | | | SECTION 10-3. SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS | 120 | | 10-3.01 DESCRIPTION | | | 10 J.01 DEBOKH HOIV | | ## STANDARD PLANS LIST The Standard Plan sheets applicable to this contract include, but are not limited to those indicated below. The Revised Standard Plans (RSP) and New Standard Plans (NSP) which apply to this contract are included as individual sheets of the project plans. | A10A | Abbreviations | |------------|---| | A10B | Symbols | | A20A | Pavement Markers and Traffic Lines, Typical Details | | A20B | Pavement Markers and Traffic Lines, Typical Details | | A24E | Pavement Markings - Words and Crosswalks | | A62A | Excavation and Backfill - Miscellaneous Details | | A62C | Limits of Payment for Excavation and Backfill - Bridge | | A73A | Object Markers | | A73B | Markers | | RSP A73C | Delineators, Channelizers and Barricades | | A77A | Metal Beam Guard Railing – Typical Wood Post With Wood Block | | A77B | Metal Beam Guard Railing - Standard Hardware | | A77C | Metal Beam Guard Railing – Wood Post and Wood Block Details | | A77D | Metal Beam Guard Railing – Typical Layouts | | A77F | Metal Beam Guard Railing – Typical Embankment Widening for End Treatments | | RSP A77G | Metal Beam Guard Railing – End Treatment, Terminal Anchor Assembly (Type SFT) | | A77H | Metal Beam Guard Railing - Anchor Cable and Anchor Plate Details | | A77J | Metal Beam Guard Railing Connections to Bridge Railings, Retaining Walls and | | | Abutments | | RSP A77L | Metal Beam Guard Railing and Single Faced Barrier Railing Terminal System - End | | | Treatments | | A82B | Crash Cushion (Type ADIEM) | | A87 | Curbs, Dikes and Driveways | | D74B | Drainage Inlets | | D74C | Drainage Inlet Details | | D77A | Grate Details | | D78 | Gutter Depressions | | D88 | Construction Loads On Culverts | | T1A | Temporary Crash Cushion, Sand Filled (Unidirectional) | | T1B | Temporary Crash Cushion, Sand Filled (Bidirectional) | | RSP T2 | Temporary Crash Cushion, Sand Filled (Shoulder Installations) | | T3 | Temporary Railing (Type K) | | T13 | Traffic Control System for Lane Closure On Two Lane Conventional Highways | | T17 | Traffic Control System for Moving Lane Closure On Two Lane Highways | | B0-1 | Bridge Details | | RSP B11-55 | Concrete Barrier Type 732 | | B14-3 | Communication and Sprinkler Control Conduits (Conduit Less Than size 103) | | RS1 | Roadside Signs, Typical Installation Details No. 1 | | RS2 | Roadside Signs - Wood Post, Typical Installation Details No. 2 | | RS4 | Roadside Signs, Typical Installation Details No. 4 | | ES-1A | Signal, Lighting and Electrical Systems - Symbols and Abbreviations | | EC 1D | Signal Lighting and Floatrical Systems Symbols and Abbraviations | Signal, Lighting and Electrical Systems - Symbols and Abbreviations ES-1B #### DEPARTMENT OF TRANSPORTATION #### NOTICE TO CONTRACTORS #### THIS IS AN INFORMAL BIDS CONTRACT CONTRACT NO. 05-0H6304 05-SCr-9-17.4 Sealed proposals for the work shown on the plans entitled: ## STATE OF CALIFORNIA; DEPARTMENT OF TRANSPORTATION; PROJECT PLANS FOR CONSTRUCTION ON STATE HIGHWAY IN SANTA CRUZ COUNTY NEAR BEN LOMOND AT 0.64 KM SOUTH OF WESTERN AVENUE will be received at the Department of Transportation, 1120 N Street, Room 0200, MS #26, Sacramento, CA 95814, until 2 o'clock p.m. on July 30, 2002, at which time they will be publicly opened and read in Room 0100 at the same address. Proposal forms for this work are included in a separate book entitled: # STATE OF CALIFORNIA; DEPARTMENT OF TRANSPORTATION; PROPOSAL AND CONTRACT FOR CONSTRUCTION ON STATE HIGHWAY IN SANTA CRUZ COUNTY NEAR BEN LOMOND AT 0.64 KM SOUTH OF WESTERN AVENUE General work description: Existing highway to be overlaid with asphalt concrete and to construct a viaduct. This project has a goal of 3 percent Disabled Veteran Business Enterprise (DVBE) participation. No prebid meeting is scheduled for this project. Bids are required for the entire work described herein. At the time this contract is awarded, the Contractor shall possess either a Class A license or any combination of the following Class C licenses which constitutes a majority of the work: C-8, C-12. Cross sections for this project are available at the office of the District Director of Transportation of the district in which the work is situated in paper copy format. Bid packages with proposal forms for bidding this project can only be obtained at the Department of Transportation, Plans and Bid Documents, Room 0200, MS #26, Transportation Building, 1120 N Street, Sacramento, California 95814, FAX No. (916) 654-7028, Telephone No. (916) 654-4490. Project plans and special provisions may be obtained either at the preceding address, or at the Department of Transportation, 1150 Laurel lane, San Luis Obispo, California 93401, Telephone No. (805) 549-3387. Use FAX orders to expedite orders for project plans, special provisions and proposal forms. Standard Specifications are available through the State of California, Department of Transportation, Publications Unit, 1900 Royal Oaks Drive, Sacramento, CA 95815, Telephone No. (916) 445-3520. This contract is subject to state contract nondiscrimination and compliance requirements pursuant to Government Code, Section 12990. The successful bidder shall furnish a payment bond and a performance bond. The Contractor must also be properly licensed at the time the bid is submitted, except that on a joint venture bid a joint venture license may be obtained by a combination of licenses after bid opening but before award in conformance with Business and Professions Code, Section 7029.1. Preference will be granted to bidders properly certified as a "Small Business" as determined by the Department of General Services, Office of Small Business Certification and Resources at the time of bid opening in conformance with the provisions in Section 2-1.05, "Small Business Preference," of the special provisions, and Section 1896 et seq, Title 2, California Code of Regulations. A form for requesting a "Small Business" preference is included with the bid documents. Applications for status as a "Small Business" must be submitted to the Department of General Services, Office of Small Business Certification and Resources, 1531 "I" Street, Second Floor, Sacramento, CA 95814, Telephone No. (916) 322-5060. A reciprocal preference will be granted to "California company" bidders in conformance with Section 6107 of the Public Contract Code. (See Sections 2 and 3 of the special provisions.) A form for indicating whether bidders are or are not a "California company" is included in the bid documents and is to be filled in and signed by all bidders. Pursuant to Section 1773 of the Labor Code, the general prevailing wage rates in the county, or counties, in which the work is to be done have been determined by the Director of the California Department of Industrial Relations. These wages are set forth in the General Prevailing Wage Rates for this project, available at the Labor Compliance Office at the offices of the District Director of Transportation for the district in which the work is situated, and available from the California Department of Industrial Relations' Internet Web Site at: http://www.dir.ca.gov. Future effective general prevailing wage rates which have been predetermined and are on file with the California Department of Industrial Relations are referenced but not printed in the general prevailing wage rates. DEPARTMENT OF TRANSPORTATION Deputy Director Transportation Engineering Dated July 15, 2002 AFL ### **COPY OF ENGINEER'S ESTIMATE** (NOT TO BE USED FOR BIDDING PURPOSES) 05-0Н6304 | Item | Item Code | Item | Unit of Measure | Estimated Quantity | |-----------|-----------|--|-----------------|--------------------| | 1 | 071325 | TEMPORARY FENCE (TYPE ESA) | M | 43 | | 2
(S) | 074029 | TEMPORARY SILT FENCE | M | 43 | | 3
(S) | 120090 | CONSTRUCTION AREA SIGNS | LS | LUMP SUM | | 4
(S) | 120100 | TRAFFIC CONTROL SYSTEM | LS | LUMP SUM | | 5 | 120120 | TYPE III BARRICADE | EA | 3 | | 6 | 120151 | TEMPORARY TRAFFIC STRIPE (TAPE) | M | 100 | | 7 | 120152 | TEMPORARY PAVEMENT MARKING (TAPE) | M2 | 2.2 | | 8
(S) | 120165 | CHANNELIZER (SURFACE MOUNTED) | EA | 9 | | 9 | 024363 | MAINTAIN TEMPORARY SIGNAL SYSTEM | LS | LUMP SUM | | 10
(S) | 128650 | PORTABLE CHANGEABLE MESSAGE SIGN | LS | LUMP SUM | | 11 | 129000 | TEMPORARY RAILING (TYPE K) | M | 180 | | 12 | 024364 | TEMPORARY CRASH CUSHION (ADIEM) | EA | 2 | | 13
(S) | 150662 | REMOVE METAL BEAM GUARD RAILING | M | 140 | | 14 | 049082 | REMOVE CRIB WALL (PORTION) | LS | LUMP SUM | | 15 | 151274 | SALVAGE CONCRETE BARRIER (TYPE K) | M | 25 | | 16 | 024365 | SALVAGE CONSTRUCTION AREA SIGN PANELS | LS | LUMP SUM | | 17
(S) | 024366 | CURED IN PLACE PIPE LINER (RESIN PLASTIC) | M | 14 | | 18 | 024367 | COLD PLANE ASPHALT CONCRETE
(90 MM MAXIMUM) | M2 | 840 | | 19 | 190101 | ROADWAY EXCAVATION | M3 | 86 | | 20
(F) | 192003 | STRUCTURE EXCAVATION (BRIDGE) | M3 | 26 | | Item | Item Code | Item | Unit of Measure | Estimated Quantity | |--
-----------|--|-----------------|--------------------| | 21 (F) STRUCTURE EXCAVATION (SOIL NAIL WALL) | | STRUCTURE EXCAVATION (SOIL NAIL WALL) | M3 | 28 | | 22
(F) | 193003 | STRUCTURE BACKFILL (BRIDGE) | M3 | 15 | | 23
(F) | 193028 | STRUCTURE BACKFILL (SOIL NAIL WALL) | M3 | 9 | | 24
(S) | 197060 | SOIL NAIL ASSEMBLY | M | 135 | | 25 | 198007 | IMPORTED MATERIAL (SHOULDER BACKING) | M3 | 6 | | 26
(S) | 203001 | EROSION CONTROL (BLANKET) | M2 | 200 | | 27 | 374002 | ASPHALTIC EMULSION (FOG SEAL COAT) | KG | 22 | | 28 | 390095 | REPLACE ASPHALT CONCRETE SURFACING | M3 | 23 | | 29 | 390160 | ASPHALT CONCRETE (TYPE B) | TONN | 160 | | 30 | 390165 | ASPHALT CONCRETE (OPEN GRADED) | TONN | 65 | | 31 | 394002 | PLACE ASPHALT CONCRETE (MISCELLANEOUS AREA) | M2 | 6 | | 32 | 394049 | PLACE ASPHALT CONCRETE DIKE (TYPE F) | M | 120 | | 33
(S) | 490657 | 600 MM CAST-IN-DRILLED-HOLE CONCRETE
PILING | M | 24 | | 34
(S) | 490658 | 750 MM CAST-IN-DRILLED-HOLE CONCRETE
PILING | M | 23 | | 35
(F) | 510053 | STRUCTURAL CONCRETE, BRIDGE | M3 | 40 | | 36
(F) | 510060 | STRUCTURAL CONCRETE, RETAINING WALL | M3 | 12 | | 37
(F) | 510502 | MINOR CONCRETE (MINOR STRUCTURE) | M3 | 1.4 | | 38
(S-F) | 520102 | BAR REINFORCING STEEL (BRIDGE) | KG | 12 100 | | 39
(S-F | 520103 | BAR REINFORCING STEEL (RETAINING WALL) | KG | 1030 | | 40
(F) | 530100 | SHOTCRETE | M3 | 6 | | Item | Item Code | Item | Unit of Measure | Estimated Quantity | |-------------|-----------|--------------------------------------|-----------------|--------------------| | 41 | 597601 | PREPARE AND STAIN CONCRETE | M2 | 68 | | (S) | | | | | | 42
(F) | 721810 | SLOPE PAVING (CONCRETE) | M3 | 7 | | 43
(F) | 750001 | MISCELLANEOUS IRON AND STEEL | KG | 127 | | 44 | 820107 | DELINEATOR (CLASS 1) | EA | 10 | | 45 | 820118 | GUARD RAILING DELINEATOR | EA | 9 | | 46 | 820151 | OBJECT MARKER (TYPE L-1) | EA | 2 | | 47
(S) | 832003 | METAL BEAM GUARD RAILING (WOOD POST) | M | 140 | | 48
(S) | 839552 | TERMINAL SECTION (TYPE C) | EA | 1 | | 49
(S) | 839565 | TERMINAL SYSTEM (TYPE SRT) | EA | 1 | | 50
(S) | 839568 | TERMINAL ANCHOR ASSEMBLY (TYPE SFT) | EA | 1 | | 51
(F) | 839720 | CONCRETE BARRIER (TYPE 732) | M | 27 | | 52
(S) | 840561 | 100 MM THERMOPLASTIC TRAFFIC STRIPE | M | 370 | | 53
(S) | 850111 | PAVEMENT MARKER (RETROREFLECTIVE) | EA | 28 | | 54
(S-F) | 049083 | 50 MM CONDUIT | M | 27 | | 55 | 999990 | MOBILIZATION | LS | LUMP SUM | | | | | | | ## STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION #### **SPECIAL PROVISIONS** Annexed to Contract No. 05-0H6304 #### SECTION 1. SPECIFICATIONS AND PLANS The work embraced herein shall conform to the provisions in the Standard Specifications dated July 1999, and the Standard Plans dated July 1999, of the Department of Transportation insofar as the same may apply, and these special provisions. In case of conflict between the Standard Specifications and these special provisions, the special provisions shall take precedence over and shall be used in lieu of the conflicting portions. # AMENDMENTS TO JULY 1999 STANDARD SPECIFICATIONS #### **UPDATED JUNE 13, 2002** Amendments to the Standard Specifications set forth in these special provisions shall be considered as part of the Standard Specifications for the purposes set forth in Section 5-1.04, "Coordination and Interpretation of Plans, Standard Specifications and Special Provisions," of the Standard Specifications. Whenever either the term "Standard Specifications is amended" or the term "Standard Specifications are amended" is used in the special provisions, the text or table following the term shall be considered an amendment to the Standard Specifications. In case of conflict between such amendments and the Standard Specifications, the amendments shall take precedence over and be used in lieu of the conflicting portions. #### **SECTION 2: PROPOSAL REQUIREMENTS AND CONDITIONS** Issue Date: June 6, 2002 Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications is amended to read: #### 2-1.03 Examination of Plans, Specifications, Contract, and Site of Work - The bidder shall examine carefully the site of the work contemplated, the plans and specifications, and the proposal and contract forms therefor. The submission of a bid shall be conclusive evidence that the bidder has investigated and is satisfied as to the general and local conditions to be encountered, as to the character, quality and scope of work to be performed, the quantities of materials to be furnished and as to the requirements of the proposal, plans, specifications and the contract. - The submission of a bid shall also be conclusive evidence that the bidder is satisfied that the character, quality and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information was reasonably ascertainable from an inspection of the site and the records of exploratory work done by the Department as shown in the bid documents, as well as from the plans and specifications made a part of the contract. - Where the Department has made investigations of site conditions including subsurface conditions in areas where work is to be performed under the contract, or in other areas, some of which may constitute possible local material sources, bidders or contractors may, upon written request, inspect the records of the Department as to those investigations subject to and upon the conditions hereinafter set forth. - Where there has been prior construction by the Department or other public agencies within the project limits, records of the prior construction that are currently in the possession of the Department and which have been used by, or are known to, the designers and administrators of the project will be made available for inspection by bidders or contractors, upon written request, subject to the conditions hereinafter set forth. The records may include, but are not limited to, as-built drawings, design calculations, foundation and site studies, project reports and other data assembled in connection with the investigation, design, construction and maintenance of the prior projects. - Inspection of the records of investigations and project records may be made at the office of the district in which the work is situated, or in the case of records of investigations related to structure work, at the Transportation Laboratory in Sacramento, California. - When a log of test borings or other record of geotechnical data obtained by the Department's investigation of surface and subsurface conditions is included with the contract plans, it is furnished for the bidders' or Contractor's information and its use shall be subject to the conditions and limitations set forth in this Section 2-1.03. - In some instances, information considered by the Department to be of possible interest to bidders or contractors has been compiled as "Materials Information." The use of the "Materials Information" shall be subject to the conditions and limitations set forth in this Section 2-1.03 and Section 6-2, "Local Materials." - When cross sections are not included with the plans, but are available, bidders or contractors may inspect the cross sections and obtain copies for their use, at their expense. - When cross sections are included with the contract plans, it is expressly understood and agreed that the cross sections do not constitute part of the contract, do not necessarily represent actual site conditions or show location, character, dimensions and details of work to be performed, and are included in the plans only for the convenience of bidders and their use is subject to the conditions and limitations set forth in this Section 2-1.03. - When contour maps were used in the design of the project, the bidders may inspect those maps, and if available, they may obtain copies for their use. - The availability or use of information described in this Section 2-1.03 is not to be construed in any way as a waiver of the provisions of the first paragraph in this Section 2-1.03 and bidders and contractors are cautioned to make independent investigations and examinations as they deem necessary to be satisfied as to conditions to be encountered in the performance of the work and, with respect to possible local material sources, the quality and quantity of material available from the property and the type and extent of processing that may be required in order to produce material conforming to the requirements of the specifications. - The Department assumes no responsibility for conclusions or interpretations made by a bidder or contractor based on the information or data made available by the Department. The Department does not assume responsibility for representation made by its officers or agents before the execution of the contract concerning surface or subsurface conditions, unless that representation is expressly stated in the contract. - No conclusions or interpretations made by a bidder or contractor from the information and data made available by the Department will relieve a bidder or contractor from properly fulfilling the terms of the contract. #### **SECTION 5: CONTROL OF WORK** Issue Date: December 31, 2001 Section 5-1.02A, "Trench Excavation Safety Plans," of the Standard Specifications is amended to read: #### 5-1.02A Excavation Safety Plans - The Construction Safety Orders of the Division of Occupational Safety and Health shall apply to all excavations. For all excavations 1.5 m or more in depth, the Contractor shall submit to the Engineer a detailed plan showing the design and details of the protective systems to be provided for worker protection from the hazard of caving ground during excavation. The detailed plan shall include any tabulated data and any design calculations used in the preparation of the plan. Excavation shall not begin until the
detailed plan has been reviewed and approved by the Engineer. - Detailed plans of protective systems for which the Construction Safety Orders require design by a registered professional engineer shall be prepared and signed by an engineer who is registered as a Civil Engineer in the State of California, and shall include the soil classification, soil properties, soil design calculations that demonstrate adequate stability of the protective system, and any other design calculations used in the preparation of the plan. - No plan shall allow the use of a protective system less effective than that required by the Construction Safety Orders. - If the detailed plan includes designs of protective systems developed only from the allowable configurations and slopes, or Appendices, contained in the Construction Safety Orders, the plan shall be submitted at least 5 days before the Contractor intends to begin excavation. If the detailed plan includes designs of protective systems developed from tabulated data, or designs for which design by a registered professional engineer is required, the plan shall be submitted at least 3 weeks before the Contractor intends to begin excavation. • Attention is directed to Section 7-1.01E, "Trench Safety." #### **SECTION 19: EARTHWORK** Issue Date: December 31, 2001 The third paragraph of Section 19-1.02, "Preservation of Property," of the Standard Specifications is amended to read: • In addition to the provisions in Sections 5-1.02, "Plans and Working Drawings," and 5-1.02A, "Excavation Safety Plans," detailed plans of the protective systems for excavations on or affecting railroad property will be reviewed for adequacy of protection provided for railroad facilities, property, and traffic. These plans shall be submitted at least 9 weeks before the Contractor intends to begin excavation requiring the protective systems. Approval by the Engineer of the detailed plans for the protective systems will be contingent upon the plans being satisfactory to the railroad company involved. #### **SECTION 42: GROOVE AND GRIND PAVEMENT** Issue Date: December 31, 2001 The last sentence of the first subparagraph of the third paragraph in Section 42-2.02, "Construction," of the Standard Specifications is amended to read: After grinding has been completed, the pavement shall conform to the straightedge and profile requirements specified in Section 40-1.10, "Final Finishing." #### **SECTION 49: PILING** Issue Date: December 31, 2001 Section 49-1.05, "Driving Equipment," of the Standard Specifications is amended by adding the following paragraph after the seventh paragraph: • The use of followers or underwater hammers for driving piles will be permitted if authorized in writing by the Engineer. When a follower or underwater hammer is used, its efficiency shall be verified by furnishing the first pile in each bent or footing sufficiently long and driving the pile without the use of a follower or underwater hammer. The first and second paragraphs in Section 49-4.01, "Description," of the Standard Specifications are amended to read: - Cast-in-place concrete piles shall consist of one of the following: - A. Steel shells driven permanently to the required bearing value and penetration and filled with concrete. - B. Steel casings installed permanently to the required penetration and filled with concrete. - C. Drilled holes filled with concrete. - D. Rock sockets filled with concrete. - The drilling of holes shall conform to the provisions in these specifications. Concrete filling for cast-in-place concrete piles is designated by compressive strength and shall have a minimum 28-day compressive strength of 25 MPa. At the option of the Contractor, the combined aggregate grading for the concrete shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading. Concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," and Section 51, "Concrete Structures." Reinforcement shall conform to the provisions in Section 52, "Reinforcement." The fourth paragraph in Section 49-4.03, "Drilled Holes," of the Standard Specifications is amended to read: • After placing reinforcement and prior to placing concrete in the drilled hole, if caving occurs or deteriorated foundation material accumulates on the bottom of the hole, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean. The third paragraph in Section 49-6.02, "Payment," of the Standard Specifications is amended to read: • The contract price paid per meter for cast-in-drilled-hole concrete piling shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in drilling holes, disposing of material resulting from drilling holes, temporarily casing holes and removing water when necessary, furnishing and placing concrete and reinforcement, and constructing reinforced concrete extensions, complete in place, to the required penetration, as shown on the plans, as specified in these specifications and in the special provisions, and as directed by the Engineer. #### **SECTION 50: PRESTRESSING CONCRETE** Issue Date: December 31, 2001 Section 50-1.02, "Drawings," of the Standard Specifications is amended by adding the following paragraph after the second paragraph: • Each working drawing submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate working drawing submittal. Section 50-1.05, "Prestressing Steel," of the Standard Specifications is amended to read: - Prestressing steel shall be high-tensile wire conforming to the requirements in ASTM Designation: A 421, including Supplement I; high-tensile seven-wire strand conforming to the requirements in ASTM Designation: A 416; or uncoated high-strength steel bars conforming to the requirements in ASTM Designation: A 722, including all supplementary requirements. The maximum mass requirement of ASTM Designation: A 722 will not apply. - In addition to the requirements of ASTM Designation: A 722, for deformed bars, the reduction of area shall be determined from a bar from which the deformations have been removed. The bar shall be machined no more than necessary to remove the deformations over a length of 300 mm, and reduction will be based on the area of the machined portion. - In addition to the requirements specified herein, epoxy-coated seven-wire prestressing steel strand shall be grit impregnated and filled in conformance with the requirements in ASTM Designation: A 882/A 882M, including Supplement I, and the following: - A. The coating material shall be on the Department's list of approved coating materials for epoxy-coated strand, available from the Transportation Laboratory. - B. The film thickness of the coating after curing shall be 381 μ m to 1143 μ m. - C. Prior to coating the strand, the Contractor shall furnish to the Transportation Laboratory a representative 230-g sample from each batch of epoxy coating material to be used. Each sample shall be packaged in an airtight container identified with the manufacturer's name and batch number. - D. Prior to use of the epoxy-coated strand in the work, written certifications referenced in ASTM Designation: A 882/A 882M, including a representative load-elongation curve for each size and grade of strand to be used and a copy of the quality control tests performed by the manufacturer, shall be furnished to the Engineer. - E. In addition to the requirements in Section 50-1.10, "Samples for Testing," four 1.5-m long samples of coated strand and one 1.5-m long sample of uncoated strand of each size and reel shall be furnished to the Engineer for testing. These samples, as selected by the Engineer, shall be representative of the material to be used in the work. - F. Epoxy-coated strand shall be cut using an abrasive saw. - G. All visible damage to coatings caused by shipping and handling, or during installation, including cut ends, shall be repaired in conformance with the requirements in ASTM Designation: A 882/A 882M. The patching material shall be furnished by the manufacturer of the epoxy powder and shall be applied in conformance with the manufacturer's written recommendations. The patching material shall be compatible with the original epoxy coating material and shall be inert in concrete. - All bars in any individual member shall be of the same grade, unless otherwise permitted by the Engineer. - When bars are to be extended by the use of couplers, the assembled units shall have a tensile strength of not less than the manufacturer's minimum guaranteed ultimate tensile strength of the bars. Failure of any one sample to meet this requirement will be cause for rejection of the heat of bars and lot of couplers. The location of couplers in the member shall be subject to approval by the Engineer. - Wires shall be straightened if necessary to produce equal stress in all wires or wire groups or parallel lay cables that are to be stressed simultaneously or when necessary to ensure proper positioning in the ducts. - Where wires are to be button-headed, the buttons shall be cold formed symmetrically about the axes of the wires. The buttons shall develop the minimum guaranteed ultimate tensile strength of the wire. No cold forming process shall be used that causes indentations in the wire. Buttonheads shall not contain wide open splits, more than 2 splits per head, or splits not parallel with the axis of the wire. - Prestressing steel shall be protected against physical damage and rust or other results of corrosion at all times from manufacture to grouting or encasing in concrete. Prestressing steel that has sustained physical damage at any time shall be rejected. The development of visible rust or other results of corrosion shall be cause for rejection, when ordered by the Engineer. - Epoxy-coated
prestressing steel strand shall be covered with an opaque polyethylene sheeting or other suitable protective material to protect the strand from exposure to sunlight, salt spray, and weather. For stacked coils, the protective covering shall be draped around the perimeter of the stack. The covering shall be adequately secured; however, it should allow for air circulation around the strand to prevent condensation under the covering. Epoxy-coated strand shall not be stored within 300 m of ocean or tidal water for more than 2 months. - Prestressing steel shall be packaged in containers or shipping forms for the protection of the steel against physical damage and corrosion during shipping and storage. Except for epoxy-coated strand, a corrosion inhibitor which prevents rust or other results of corrosion, shall be placed in the package or form, or shall be incorporated in a corrosion inhibitor carrier type packaging material, or when permitted by the Engineer, may be applied directly to the steel. The corrosion inhibitor shall have no deleterious effect on the steel or concrete or bond strength of steel to concrete. Packaging or forms damaged from any cause shall be immediately replaced or restored to original condition. - The shipping package or form shall be clearly marked with a statement that the package contains high-strength prestressing steel, and the type of corrosion inhibitor used, including the date packaged. - Prestressing steel for post-tensioning which is installed in members prior to placing and curing of the concrete, and which is not epoxy-coated, shall be continuously protected against rust or other results of corrosion, until grouted, by means of a corrosion inhibitor placed in the ducts or applied to the steel in the duct. The corrosion inhibitor shall conform to the provisions specified herein. - When steam curing is used, prestressing steel for post-tensioning shall not be installed until the steam curing is completed. - Water used for flushing ducts shall contain either quick lime (calcium oxide) or slaked lime (calcium hydroxide) in the amount of 0.01-kg/L. Compressed air used to blow out ducts shall be oil free. - When prestressing steel for post-tensioning is installed in the ducts after completion of concrete curing, and if stressing and grouting are completed within 10 days after the installation of the prestressing steel, rust which may form during those 10 days will not be cause for rejection of the steel. Prestressing steel installed, tensioned, and grouted in this manner, all within 10 days, will not require the use of a corrosion inhibitor in the duct following installation of the prestressing steel. Prestressing steel installed as above but not grouted within 10 days shall be subject to all the requirements in this section pertaining to corrosion protection and rejection because of rust. The requirements in this section pertaining to tensioning and grouting within 10 days shall not apply to epoxy-coated prestressing steel strand. - Any time prestressing steel for pretensioning is placed in the stressing bed and is exposed to the elements for more than 36 hours prior to encasement in concrete, adequate measures shall be taken by the Contractor, as approved by the Engineer, to protect the steel from contamination or corrosion. - After final fabrication of the seven-wire prestressing steel strand, no electric welding of any form shall be performed on the prestressing steel. Whenever electric welding is performed on or near members containing prestressing steel, the welding ground shall be attached directly to the steel being welded. - Pretensioned prestressing steel shall be cut off flush with the end of the member. For epoxy-coated prestressing steel, only abrasive saws shall be used to cut the steel. The exposed ends of the prestressing steel and a 25-mm strip of adjoining concrete shall be cleaned and painted. Cleaning shall be by wire brushing or abrasive blast cleaning to remove all dirt and residue on the metal or concrete surfaces. Immediately after cleaning, the surfaces shall be covered with one application of unthinned zinc-rich primer (organic vehicle type) conforming to the provisions in Section 91, "Paint," except that 2 applications shall be applied to surfaces which will not be covered by concrete or mortar. Aerosol cans shall not be used. The paint shall be thoroughly mixed at the time of application and shall be worked into any voids in the prestressing tendons. The thirteenth paragraph in Section 50-1.08, "Prestressing," of the Standard Specifications is amended to read: • Prestressing steel in pretensioned members shall not be cut or released until the concrete in the member has attained a compressive strength of not less than the value shown on the plans or 28 MPa, whichever is greater. In addition to these concrete strength requirements, when epoxy-coated prestressing steel strand is used, the steel shall not be cut or released until the temperature of the concrete surrounding the strand is less than 65°C, and falling. The fifth paragraph in Section 50-1.10, "Samples for Testing," of the Standard Specifications is amended to read: • The following samples of materials and tendons, selected by the Engineer from the prestressing steel at the plant or jobsite, shall be furnished by the Contractor to the Engineer well in advance of anticipated use: For wire or bars, one 2-m long sample and for strand, one 1.5-m long sample, of each size shall be furnished for each heat or reel. For epoxy-coated strand, one 1.5-m long sample of uncoated strand of each size shall be furnished for each reel. If the prestressing tendon is a bar, one 2-m long sample shall be furnished and in addition, if couplers are to be used with the bar, two 1.25-m long samples of bar, equipped with one coupler and fabricated to fit the coupler, shall be furnished. The second paragraph in Section 50-1.11, "Payment," of the Standard Specifications is amended to read: • The contract lump sum prices paid for prestressing cast-in-place concrete of the types listed in the Engineer's Estimate shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in furnishing, placing, and tensioning the prestressing steel in cast-in-place concrete structures, complete in place, as shown on the plans, as specified in these specifications and the special provisions, and as directed by the Engineer. #### **SECTION 51: CONCRETE STRUCTURES** Issue Date: December 31, 2001 The first and second paragraph in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications are amended to read: - The Contractor shall submit to the Engineer working drawings and design calculations for falsework proposed for use at bridges. For bridges where the height of any portion of the falsework, as measured from the ground line to the soffit of the superstructure, exceeds 4.25 m; or where any individual falsework clear span length exceeds 4.85 m; or where provision for vehicular, pedestrian, or railroad traffic through the falsework is made; the drawings shall be signed by an engineer who is registered as a Civil Engineer in the State of California. Six sets of the working drawings and 2 copies of the design calculations shall be furnished. Additional working drawings and design calculations shall be submitted to the Engineer when specified in "Railroad Relations and Insurance" of the special provisions. - The falsework drawings shall include details of the falsework erection and removal operations showing the methods and sequences of erection and removal and the equipment to be used. The details of the falsework erection and removal operations shall demonstrate the stability of all or any portions of the falsework during all stages of the erection and removal operations. The seventh paragraph in Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications is amended to read: • In the event that several falsework plans are submitted simultaneously, or an additional plan is submitted for review before the review of a previously submitted plan has been completed, the Contractor shall designate the sequence in which the plans are to be reviewed. In such event, the time to be provided for the review of any plan in the sequence shall be not less than the review time specified above for that plan, plus 2 weeks for each plan of higher priority which is still under review. A falsework plan submittal shall consist of plans for a single bridge or portion thereof. For multi-frame bridges, each frame shall require a separate falsework plan submittal. Section 51-1.06A, "Falsework Design and Drawings," of the Standard Specifications is amended by adding the following paragraphs: • If structural composite lumber is proposed for use, the falsework drawings shall clearly identify the structural composite lumber members by grade (E value), species, and type. The Contractor shall provide technical data from the manufacturer showing the tabulated working stress values of the composite lumber. The Contractor shall furnish a certificate of compliance as specified in Section 6-1.07, "Certificates of Compliance," for each delivery of structural composite lumber to the project site. • For falsework piles with a calculated loading capacity greater than 900 kN, the falsework piles shall be designed by an engineer who is registered as either a Civil Engineer or a Geotechnical Engineer in the State of California, and the calculations shall be submitted to the Engineer. The first paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read: • The design load for falsework shall consist of the sum of dead and live vertical loads, and an assumed horizontal load. The minimum total design load for any falsework, including members that support walkways, shall be not less than 4800 N/m² for the combined live and dead load
regardless of slab thickness. The eighth paragraph in Section 51-1.06A(1), "Design Loads," of the Standard Specifications is amended to read: • In addition to the minimum requirements specified in this Section 51-1.06A, falsework for box girder structures with internal falsework bracing systems using flexible members capable of withstanding tensile forces only, shall be designed to include the vertical effects caused by the elongation of the flexible member and the design horizontal load combined with the dead and live loads imposed by concrete placement for the girder stems and connected bottom slabs. Falsework comprised of individual steel towers with bracing systems using flexible members capable of withstanding tensile forces only to resist overturning, shall be exempt from these additional requirements. The third paragraph in Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended to read: • When falsework is supported on piles, the piles shall be driven and the actual bearing value assessed in conformance with the provisions in Section 49, "Piling." Section 51-1.06B, "Falsework Construction," of the Standard Specifications is amended by adding the following paragraphs: - For falsework piles with a calculated loading capacity greater than 900 kN, the Contractor shall conduct dynamic monitoring of pile driving and conduct penetration and bearing analyses based on a wave equation analysis. These analyses shall be signed by an engineer who is registered as a Civil Engineer in the State of California and submitted to the Engineer prior to completion of falsework erection. - Prior to the placement of falsework members above the stringers, the final bracing system for the falsework shall be installed. Section 51-1.06C, "Removing Falsework," of the Standard Specifications is amended by adding the following paragraph: • The falsework removal operation shall be conducted in such a manner that any portion of the falsework not yet removed remains in a stable condition at all times. The sixth paragraph in Section 51-1.09, "Placing Concrete," of the Standard Specifications is amended to read: • Vibrators used to consolidate concrete containing epoxy-coated bar reinforcement or epoxy-coated prestressing steel shall have a resilient covering to prevent damage to the epoxy-coating on the reinforcement or prestressing steel. The table in the ninth paragraph of Section 51-1.12H(1), "Plain and Fabric Reinforced Elastomeric Bearing Pads," of the Standard Specifications is amended to read: | Tensile strength, percent | -15 | |------------------------------|-----------------------------------| | Elongation at break, percent | -40; but not less than 300% total | | | elongation of the material | | Hardness, points | +10 | Section 51-1.17, "Finishing Bridge Decks," of the Standard Specifications is amended by deleting the thirteenth and fourteenth paragraphs. The fourteenth paragraph in Section 51-1.23, "Payment," of the Standard Specifications is amended by deleting "and injecting epoxy in cracks". #### **SECTION 52: REINFORCEMENT** Issue Date: December 31, 2001 The third paragraph in Section 52-1.04, "Inspection," of the Standard Specifications is amended to read: • A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," shall also be furnished for each shipment of epoxy-coated bar reinforcement or wire reinforcement certifying that the coated reinforcement conforms to the requirements in ASTM Designation: A 775/A 775M or A 884/A 884M, respectively, and the provisions in Section 52-1.02B, "Epoxy-coated Reinforcement." The Certificate of Compliance shall include all of the certifications specified in ASTM Designation: A 775/A 775M or A 884/A 884M respectively, and a statement that the coating material has been prequalified by acceptance testing performed by the Valley Forge Laboratories, Inc., Devon, Pennsylvania. The third paragraph in Section 52-1.08C, "Mechanical Butt Splices," of the Standard Specifications is amended to read: • The total slip of the reinforcing bars within the splice sleeve after loading in tension to 200 MPa and relaxing to 20 MPa shall not exceed the values listed in the following table. The slip shall be measured between gage points that are clear of the splice sleeve. | Reinforcing Bar Number | Total Slip (µm) | |------------------------|-----------------| | 13 | 250 | | 16 | 250 | | 19 | 250 | | 22 | 350 | | 25 | 350 | | 29 | 350 | | 32 | 450 | | 36 | 450 | | 43 | 600 | | 57 | 750 | The first paragraph in Section 52-1.08C(5), "Sleeve-Lockshear Bolt Mechanical Butt Splices," of the Standard Specifications is amended to read: • The sleeve-lockshear bolt type of mechanical butt splices shall consist of a seamless steel sleeve, center hole with centering pin, and bolts that are tightened until the bolt heads shear off with the bolt ends left embedded in the reinforcing bars. The seamless steel sleeve shall be either formed into a V configuration or shall have 2 serrated steel strips welded to the inside of the sleeve. Section 52-1.08F, "Nondestructive Splice Tests," of the Standard Specifications is amended by deleting the seventh paragraph. #### **SECTION 55: STEEL STRUCTURES** Issue Date: December 31, 2001 Section 55-3.14, "Bolted Connections," of the Standard Specifications is amended by adding the following after the ninth paragraph: • If a torque multiplier is used in conjunction with a calibrated wrench as a method for tightening fastener assemblies to the required tension, both the multiplier and the wrench shall be calibrated together as a system. The same length input and output sockets and extensions that will be used in the work shall also be included in the calibration of the system. The manufacturer's torque multiplication ratio shall be adjusted during calibration of the system, such that when this adjusted ratio is multiplied by the actual input calibrated wrench reading, the product is a calculated output torque that is within 2 percent of the true output torque. When this system is used in the work to perform any installation tension testing, rotational capacity testing, fastener tightening, or tension verification, it shall be used, intact as calibrated. The sixth paragraph of Section 55-4.02, "Payment," of the Standard Specifications is amended to read: • If a portion or all of the structural steel is fabricated more than 480 air line kilometers from both Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in these expenses, it is agreed that payment to the Contractor for furnishing the structural steel from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced \$5000 or by an amount computed at \$0.044 per kilogram of structural steel fabricated, whichever is greater, or in the case of each fabrication site located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced \$8000 or by \$0.079 per kilogram of structural steel fabricated, whichever is greater. #### **SECTION 56: SIGNS** Issue Date: December 31, 2001 Section 56-1.01, "Description," of the Standard Specifications is amended by deleting the third paragraph. The sixth through the thirteenth paragraphs in Section 56-1.03, "Fabrication," of the Standard Specifications are amended to read: - High-strength bolted connections, where shown on the plans, shall conform to the provisions in Section 55-3.14, "Bolted Connections," except that only fastener assemblies consisting of a high-strength bolt, nut, hardened washer, and direct tension indicator shall be used. - High-strength fastener assemblies, and any other bolts, nuts, and washers attached to sign structures shall be zinc-coated by the mechanical deposition process. - An alternating snugging and tensioning pattern for anchor bolts and high-strength bolted splices shall be used. Once tensioned, high-strength fastener components and direct tension indicators shall not be reused. - For bolt diameters less than 10 mm, the diameter of the bolt hole shall be not more than 0.80-mm larger than the nominal bolt diameter. For bolt diameters greater than or equal to 10 mm, the diameter of the bolt hole shall be not more than 1.6 mm larger than the nominal bolt diameter. - Sign structures shall be fabricated into the largest practical sections prior to galvanizing. - Ribbed sheet metal panels for box beam closed truss sign structures shall be fastened to the truss members by cap screws or bolts as shown on the plans, or by 4.76 mm stainless steel blind rivets conforming to Industrial Fasteners Institute, Standard IFI-114, Grade 51. The outside diameter of the large flange rivet head shall be not less than 15.88 mm in diameter. Web splices in ribbed sheet metal panels may be made with similar type blind rivets of a size suitable for the thickness of material being connected. - Spalling or chipping of concrete structures shall be repaired by the Contractor at the Contractor's expense. - Overhead sign supports shall have an aluminum identification plate permanently attached near the base, adjacent to the traffic side on one of the vertical posts, using either stainless steel rivets or stainless steel screws. As a minimum, the information on the plate shall include the name of the manufacturer, the date of manufacture and the contract number. #### **SECTION 59: PAINTING** Issue Date: December 31, 2001 Section 59-2.01, "General," of the Standard Specifications is amended by adding the following paragraphs after the first paragraph: • Unless otherwise specified, no painting Contractors or subcontractors will be permitted to commence work without having the following current "SSPC: The Society for Protective Coatings" (formerly the Steel Structures Painting
Council) certifications in good standing: - A. For cleaning and painting structural steel in the field, certification in conformance with the requirements in Qualification Procedure No. 1, "Standard Procedure For Evaluating Painting Contractors (Field Application to Complex Industrial Structures)" (SSPC-QP 1). - B. For removing paint from structural steel, certification in conformance with the requirements in Qualification Procedure No. 2, "Standard Procedure For Evaluating Painting Contractors (Field Removal of Hazardous Coatings from Complex Structures)" (SSPC-QP 2). - C. For cleaning and painting structural steel in a permanent painting facility, certification in conformance with the requirements in Qualification Procedure No. 3, "Standard Procedure For Evaluating Qualifications of Shop Painting Applicators" (SSPC-QP 3). The AISC's Sophisticated Paint Endorsement (SPE) quality program will be considered equivalent to SSPC-QP 3. The third paragraph of Section 59-2.03, "Blast Cleaning," of the Standard Specifications is amended to read: • Exposed steel or other metal surfaces to be blast cleaned shall be cleaned in conformance with the requirements in Surface Preparation Specification No. 6, "Commercial Blast Cleaning," of the "SSPC: The Society for Protective Coatings." Blast cleaning shall leave all surfaces with a dense, uniform, angular anchor pattern of not less than 35 μ m as measured in conformance with the requirements in ASTM Designation: D 4417. The first paragraph of Section 59-2.06, "Hand Cleaning," of the Standard Specifications is amended to read: • Dirt, loose rust and mill scale, or paint which is not firmly bonded to the surfaces shall be removed in conformance with the requirements in Surface Preparation Specification No. 2, "Hand Tool Cleaning," of the "SSPC: The Society for Protective Coatings." Edges of old remaining paint shall be feathered. The fourth paragraph of Section 59-2.12, "Painting," of the Standard Specifications is amended to read: • The dry film thickness of the paint will be measured in place with a calibrated Type 2 magnetic film thickness gage in conformance with the requirements of specification SSPC-PA2 of the "SSPC: The Society for Protective Coatings." #### **SECTION 75: MISCELLANEOUS METAL** Issue Date: December 31, 2001 The table in the tenth paragraph of Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications is amended to read: | Material | Specification | |---------------------------|---| | Steel bars, plates and | ASTM Designation: A 36/A 36M or A 575, | | | A 576 (AISI or M Grades 1016 through 1030 | | shapes | except Grade 1017) | | Steel fastener components | | | Bolts and studs | ASTM Designation: A 307 | | Headed anchor bolts | ASTM Designation: A 307 ASTM Designation: A 307, Grade B, including | | Headed anchor boits | | | Nonheaded anchor | S1 supplementary requirements ASTM Designation: A 307, Grade C, including | | Nonheaded anchor bolts | | | DOILS | S1 supplementary requirements and S1.6 of AASHTO Designation: M 314 supplementary | | | requirements | | | or AASHTO Designation: M 314, Grade 36 or | | | 55, including S1 supplementary requirements | | High-strength bolts | ASTM Designation: A 449, Type 1 | | and studs, threaded | ASTM Designation. A 449, Type I | | rods, and nonheaded | | | anchor bolts | | | Nuts | ASTM Designation: A 563, including | | Nuts | Appendix X1* | | Washers | ASTM Designation: F 844 | | | th steel fastener assemblies for use in structural | | steel joints: | un steel fasteller assemblies for use in structural | | Bolts | ASTM Designation: A 325, Type 1 | | Tension control bolts | ASTM Designation: A 323, Type 1 ASTM Designation: F 1852, Type 1 | | Nuts | ASTM Designation: A 563, hype 1 ASTM Designation: A 563, including | | Nuts | Appendix X1* | | Hardened washers | ASTM Designation: F 436, Type 1, Circular, | | Transcried washers | including S1 supplementary requirements | | Direct tension | ASTM Designation: F 959, Type 325, | | indicators | zinc-coated | | U | lloys 304 & 316) for general applications: | | Bolts, screws, studs, | ASTM Designation: F 593 or F 738M | | threaded rods, and | 7181111 Designation: 1 373 of 1 73 of 1 | | nonheaded anchor | | | bolts | | | Nuts | ASTM Designation: F 594 or F 836M | | Washers | ASTM Designation: A 240/A 240M and | | | ANSI B 18.22M | | Carbon-steel castings | ASTM Designation: A 27/A 27M, Grade 65-35 | | | [450-240], Class 1 | | Malleable iron castings | ASTM Designation: A 47, Grade 32510 or | | | A 47M, Grade 22010 | | Gray iron castings | ASTM Designation: A 48, Class 30B | | Ductile iron castings | ASTM Designation: A 536, Grade 65-45-12 | | Cast iron pipe | Commercial quality | | Steel pipe | Commercial quality, welded or extruded | | Other parts for general | Commercial quality | | applications | Commortan quanty | | | ll ha tightanad hayand anug ar yeranah tight ahall | ^{*} Zinc-coated nuts that will be tightened beyond snug or wrench tight shall be furnished with a dyed dry lubricant conforming to Supplementary Requirement S2 in ASTM Designation: A 563. The table in the eighteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read: | | Sustained Tension | |---------------|-------------------| | Stud Diameter | Test Load | | (millimeters) | (kilonewtons) | | 29.01-33.00 | 137.9 | | 23.01-29.00 | 79.6 | | 21.01-23.00 | 64.1 | | * 18.01-21.00 | 22.2 | | 15.01-18.00 | 18.2 | | 12.01-15.00 | 14.2 | | 9.01-12.00 | 9.34 | | 6.00-9.00 | 4.23 | ^{*} Maximum stud diameter permitted for mechanical expansion anchors. The table in the nineteenth paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read: | | Ultimate | |---------------|---------------| | Stud Diameter | Tensile Load | | (millimeters) | (kilonewtons) | | 30.01-33.00 | 112.1 | | 27.01-30.00 | 88.1 | | 23.01-27.00 | 71.2 | | 20.01-23.00 | 51.6 | | 16.01-20.00 | 32.0 | | 14.01-16.00 | 29.4 | | 12.00-14.00 | 18.7 | The table in the twenty-second paragraph of Section 75-1.03, "Miscellaneous Bridge Metal," of the Standard Specifications is amended to read: Installation Torque Values, (newton meters) | | Shell Type | Shell Type Integral Stud Type Resin Capsule | | | | | |---------------|------------|---|-----------------------|--|--|--| | | | | | | | | | | Mechanical | Mechanical | Anchors | | | | | Stud Diameter | Expansion | Expansion | and | | | | | (millimeters) | Anchors | Anchors | Cast-in-Place Inserts | | | | | 29.01-33.00 | _ | _ | 540 | | | | | 23.01-29.00 | _ | _ | 315 | | | | | 21.01-23.00 | _ | _ | 235 | | | | | 18.01-21.00 | 110 | 235 | 200 | | | | | 15.01-18.00 | 45 | 120 | 100 | | | | | 12.01-15.00 | 30 | 65 | 40 | | | | | 9.01-12.00 | 15 | 35 | 24 | | | | | 6.00-9.00 | 5 | 10 | _ | | | | **SECTION 83: RAILINGS AND BARRIERS** Issue Date: June 13, 2002 The ninth paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read: • The grades and species of wood posts and blocks shall be No. 1 timbers (also known as No. 1 structural) Douglas fir or No. 1 timbers Southern yellow pine. Wood posts and blocks shall be graded in conformance with the provisions in Section 57-2, "Structural Timber," of the Standard Specifications, except allowances for shrinkage after mill cutting shall in no case exceed 5 percent of the American Lumber Standards minimum sizes, at the time of installation. The eleventh paragraph in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications is amended to read: • Wood posts and blocks shall be pressure treated after fabrication in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications with creosote, creosote coal tar solution, creosote petroleum solution (50-50), pentachlorophenol in hydrocarbon solvent, copper naphthenate, ammoniacal copper arsenate, or ammoniacal copper zinc arsenate. In addition to the preservatives listed above, Southern yellow pine may also be pressure treated with chromated copper arsenate. When other than one of the creosote processes is used, blocks shall have a minimum retention of 6.4 Kg/m³, and need not be incised. #### SECTION 86: SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS Issue Date: February 28, 2002 The seventh paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read: • Forms shall be true to line and grade. Tops of foundations for posts and standards, except special foundations, shall be finished to curb or sidewalk grade or as directed by the Engineer. Forms shall be rigid and securely braced in place. Conduit ends and anchor bolts shall be placed in proper position and to proper height, and anchor bolts shall be held in place by means of rigid templates. Anchor bolts shall not be installed more than 1:40 from vertical. The twelfth paragraph of Section 86-2.03, "Foundations," of the Standard Specifications is amended to read: • Plumbing of the standards shall be accomplished by adjusting the leveling nuts before placing the mortar or before the foundation is finished to final grade. Shims, or other similar devices shall not be used for plumbing or raking of posts, standards or pedestals. After final adjustments of both top nuts and leveling nuts on anchorage assemblies have been made, firm contact shall exist between all bearing surfaces of the anchor bolt nuts, washers, and the base plate. Section 86-8.01, "Payment," of the Standard Specifications is amended to read by adding the following paragraph after the first paragraph: • If a portion or all of the traffic signal and lighting standards, pursuant to Standard Specification Section 86, "Signals, Lighting and Electrical Systems," are fabricated more than 480 air line
kilometers from both-Sacramento and Los Angeles, additional shop inspection expenses will be sustained by the State. Whereas it is and will be impracticable and extremely difficult to ascertain and determine the actual increase in such expenses, it is agreed that payment to the Contractor for furnishing such items from each fabrication site located more than 480 air line kilometers from both Sacramento and Los Angeles will be reduced \$5000; in addition, in the case where a fabrication site is located more than 4800 air line kilometers from both Sacramento and Los Angeles, payment will be reduced an additional \$3000 per each fabrication site (\$8000 total per site). #### **SECTION 88: ENGINEERING FABRIC** Issue Date: January 15, 2002 Section 88-1.02, "Pavement Reinforcing Fabric," of the Standard Specifications is amended to read: • Pavement reinforcing fabric shall be 100 percent polypropylene staple fiber fabric material, needle-punched, thermally bonded on one side, and conform to the following: | Specification | Requirement | |---|-------------| | Weight, grams per square meter | | | ASTM Designation: D 5261 | 140 | | Grab tensile strength | | | (25-mm grip), kilonewtons, min. in each direction | | | ASTM Designation: D 4632 | 0.45 | | Elongation at break, percent min. | | | ASTM Designation: D 4632 | 50 | | Asphalt retention by fabric, grams per square meter. (Residual Minimum) | | | ASTM Designation: D 6140 | 900 | Note: Weight, grab, elongation and asphalt retention are based on Minimum Average Roll Value (MARV) #### **SECTION 90: PORTLAND CEMENT CONCRETE** Issue Date: March 12, 2002 Section 90, "Portland Cement Concrete," of the Standard Specifications is amended to read: #### SECTION 90: PORTLAND CEMENT CONCRETE 90-1 GENERAL #### 90-1.01 DESCRIPTION - Portland cement concrete shall be composed of cementitious material, fine aggregate, coarse aggregate, admixtures if used, and water, proportioned and mixed as specified in these specifications. - The Contractor shall determine the mix proportions for all concrete except pavement concrete. The Engineer will determine the mix proportions for pavement concrete. Concrete for which the mix proportions are determined either by the Contractor or the Engineer shall conform to the requirements of this Section 90. - Unless otherwise specified, cementitious material shall be a combination of cement and mineral admixture. Cementitious material shall be either: - 1. "Type IP (MS) Modified" cement; or - 2. A combination of "Type II Modified" portland cement and mineral admixture; or - 3. A combination of Type V portland cement and mineral admixture. - Type III portland cement shall be used only as allowed in the special provisions or with the approval of the Engineer. - Class 1 concrete shall contain not less than 400 kg of cementitious material per cubic meter. - Class 2 concrete shall contain not less than 350 kg of cementitious material per cubic meter. - Class 3 concrete shall contain not less than 300 kg of cementitious material per cubic meter. - Class 4 concrete shall contain not less than 250 kg of cementitious material per cubic meter. - Minor concrete shall contain not less than 325 kg of cementitious material per cubic meter unless otherwise specified in these specifications or the special provisions. - Unless otherwise designated on the plans or specified in these specifications or the special provisions, the amount of cementitious material used per cubic meter of concrete in structures or portions of structures shall conform to the following: | Use | Cementitious Material Content (kg/m3) | |--|---------------------------------------| | Concrete designated by compressive strength: | | | Deck slabs and slab spans of bridges | 400 min., 475 max. | | Roof sections of exposed top box culverts | 400 min., 475 max. | | Other portions of structures | 350 min., 475 max. | | Concrete not designated by compressive strength: | | | Deck slabs and slab spans of bridges | 400 min. | | Roof sections of exposed top box culverts | 400 min. | | Prestressed members | 400 min. | | Seal courses | 400 min. | | Other portions of structures | 350 min. | | Concrete for precast members | 350 min., 550 max. | - Whenever the 28-day compressive strength shown on the plans is greater than 25 MPa, the concrete shall be designated by compressive strength. If the plans show a 28-day compressive strength that is 28 MPa or greater, an additional 14 days will be allowed to obtain the specified strength. The 28-day compressive strengths shown on the plans that are 25 MPa or less are shown for design information only and are not a requirement for acceptance of the concrete. - Concrete designated by compressive strength shall be proportioned such that the concrete will attain the strength shown on the plans or specified in the special provisions. - Before using concrete for which the mix proportions have been determined by the Contractor, or in advance of revising those mix proportions, the Contractor shall submit in writing to the Engineer a copy of the mix design. - Compliance with cementitious material content requirements will be verified in conformance with procedures described in California Test 518 for cement content. For testing purposes, mineral admixture shall be considered to be cement. Batch proportions shall be adjusted as necessary to produce concrete having the specified cementitious material content. - If any concrete has a cementitious material, portland cement, or mineral admixture content that is less than the minimum required, the concrete shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place and the Contractor shall pay to the State \$0.55 for each kilogram of cementitious material, portland cement, or mineral admixture that is less than the minimum required. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. The deductions will not be made unless the difference between the contents required and those actually provided exceeds the batching tolerances permitted by Section 90-5, "Proportioning." No deductions will be made based on the results of California Test 518. - The requirements of the preceding paragraph shall not apply to minor concrete or commercial quality concrete. #### 90-2 MATERIALS #### 90-2.01 CEMENT - Unless otherwise specified, cement shall be either "Type IP (MS) Modified" cement, "Type II Modified" portland cement or Type V portland cement. - "Type IP (MS) Modified" cement shall conform to the requirements for Type IP (MS) cement in ASTM Designation: C 595, and shall be comprised of an intimate and uniform blend of Type II cement and not more than 35 percent by mass of mineral admixture. The type and minimum amount of mineral admixture used in the manufacture of "Type IP (MS) Modified" cement shall be in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures." - "Type II Modified" portland cement shall conform to the requirements for Type II portland cement in ASTM Designation: C 150. - In addition, "Type IP (MS) Modified" cement and "Type II Modified" portland cement shall conform to the following requirements: - A. The cement shall not contain more than 0.60 percent by mass of alkalies, calculated as the percentage of Na₂O plus 0.658 times the percentage of K₂O, when determined by either direct intensity flame photometry or by the atomic absorption method. The instrument and procedure used shall be qualified as to precision and accuracy in conformance with the requirements in ASTM Designation: C 114; - B. The autoclave expansion shall not exceed 0.50 percent; and - C. Mortar, containing the cement to be used and Ottawa sand, when tested in conformance with California Test 527, shall not expand in water more than 0.010 percent and shall not contract in air more than 0.048 percent, except that when cement is to be used for precast prestressed concrete piling, precast prestressed concrete members, or steam cured concrete products, the mortar shall not contract in air more than 0.053 percent. - Type III and Type V portland cements shall conform to the requirements in ASTM Designation: C 150 and the additional requirements listed above for "Type II Modified" portland cement, except that when tested in conformance with California Test 527, mortar containing Type III portland cement shall not contract in air more than 0.075 percent. - Cement used in the manufacture of cast-in-place concrete for exposed surfaces of like elements of a structure shall be from the same cement mill. - Cement shall be protected from exposure to moisture until used. Sacked cement shall be piled to permit access for tally, inspection, and identification of each shipment. - Adequate facilities shall be provided to assure that cement meeting the provisions specified in this Section 90-2.01 shall be kept separate from other cement in order to prevent any but the specified cement from entering the work. Safe and suitable facilities for sampling cement shall be provided at the weigh hopper or in the feed line immediately in advance of the hopper, in conformance with California Test 125. - If cement is used prior to sampling and testing as provided in Section 6-1.07, "Certificates of Compliance," and the cement is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the cement manufacturer or supplier of the cement. If the cement is used in ready-mixed concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product. - Cement furnished without a Certificate of Compliance shall not be used in the work until the Engineer has had sufficient time to make
appropriate tests and has approved the cement for use. #### 90-2.02 AGGREGATES - Aggregates shall be free from deleterious coatings, clay balls, roots, bark, sticks, rags, and other extraneous material. - Natural aggregates shall be thoroughly and uniformly washed before use. - The Contractor, at the Contractor's expense, shall provide safe and suitable facilities, including necessary splitting devices for obtaining samples of aggregates, in conformance with California Test 125. - Aggregates shall be of such character that it will be possible to produce workable concrete within the limits of water content provided in Section 90-6.06, "Amount of Water and Penetration." - Aggregates shall have not more than 10 percent loss when tested for soundness in conformance with the requirements in California Test 214. The soundness requirement for fine aggregate will be waived, provided that the durability index, D_f , of the fine aggregate is 60, or greater, when tested for durability in conformance with California Test 229. - If the results of any one or more of the Cleanness Value, Sand Equivalent, or aggregate grading tests do not meet the requirements specified for "Operating Range" but all meet the "Contract Compliance" requirements, the placement of concrete shall be suspended at the completion of the current pour until tests or other information indicate that the next material to be used in the work will comply with the requirements specified for "Operating Range." - If the results of either or both the Cleanness Value and coarse aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete that is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$4.60 per cubic meter for paving concrete and \$7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. - If the results of either or both the Sand Equivalent and fine aggregate grading tests do not meet the requirements specified for "Contract Compliance," the concrete which is represented by the tests shall be removed. However, if the Engineer determines that the concrete is structurally adequate, the concrete may remain in place, and the Contractor shall pay to the State \$4.60 per cubic meter for paving concrete and \$7.20 per cubic meter for all other concrete for the concrete represented by these tests and left in place. The Department may deduct the amount from any moneys due, or that may become due, the Contractor under the contract. - The 2 preceding paragraphs apply individually to the "Contract Compliance" requirements for coarse aggregate and fine aggregate. When both coarse aggregate and fine aggregate do not conform to the "Contract Compliance" requirements, both paragraphs shall apply. The payments specified in those paragraphs shall be in addition to any payments made in conformance with the provisions in Section 90-1.01, "Description." - No single Cleanness Value, Sand Equivalent or aggregate grading test shall represent more than 250 m³ of concrete or one day's pour, whichever is smaller. - Aggregates specified for freeze-thaw resistance shall pass the freezing and thawing test, California Test 528. - The Contractor shall notify the Engineer of the proposed source of freeze-thaw resistant concrete aggregates at least 4 months before intended use. Should the Contractor later propose a different source of concrete aggregates, the Contractor shall again notify the Engineer at least 4 months before intended use. Blending of fine or coarse aggregates from untested sources with acceptable aggregates will not be permitted. Provisions for the time of submission of samples as provided in Section 40-1.015, "Cement Content," are superseded by the foregoing. - Concurrently with notification of proposed sources of freeze-thaw resistant concrete aggregates, the Contractor shall furnish samples in the quantity ordered by the Engineer. The samples shall be secured under the direct supervision of the Engineer. Samples from existing stockpiles of processed aggregate shall be taken from washed materials and shall be visibly damp. Samples from materials in place in a material source shall be taken at depths from the existing surface that will ensure the presence of the full quantity of ground water. Excavations for the purpose of securing samples shall be made to the full depth of intended source operations. Samples shall be protected against loss of contained water until they are delivered to the Engineer. - The Engineer will waive the above freeze-thaw test and the 4-month advance notice, required in this Section, provided aggregates are to be obtained from sources that have previously passed this test and test results are currently applicable. - No extension of contract time will be allowed for the time required to perform the freezing and thawing test. - When the source of an aggregate is changed, except for pavement concrete, the Contractor shall adjust the mix proportions and submit in writing to the Engineer a copy of the mix design before using the aggregates. When the source of an aggregate is changed for pavement concrete, the Engineer shall be allowed sufficient time to adjust the mix, and the aggregates shall not be used until necessary adjustments are made. #### 90-2.02A Coarse Aggregate - Coarse aggregate shall consist of gravel, crushed gravel, crushed rock, crushed air-cooled iron blast furnace slag or combinations thereof. Crushed air-cooled blast furnace slag shall not be used in reinforced or prestressed concrete. - Coarse aggregate shall conform to the following quality requirements: | Tests | California
Test | Requirements | |--|--------------------|--------------| | Loss in Los Angeles Rattler (after 500 | 211 | 45% max. | | revolutions) | | | | Cleanness Value | | | | Operating Range | 227 | 75 min. | | Contract Compliance | 227 | 71 min. | - In lieu of the above Cleanness Value requirements, a Cleanness Value "Operating Range" limit of 71, minimum, and a Cleanness Value "Contract Compliance" limit of 68, minimum, will be used to determine the acceptability of the coarse aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that: - 1. coarse aggregate sampled at the completion of processing at the aggregate production plant had a Cleanness Value of not less than 82 when tested by California Test 227; and - 2. prequalification tests performed in conformance with the requirements in California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete. #### 90-2.02B Fine Aggregate - Fine aggregate shall consist of natural sand, manufactured sand produced from larger aggregate or a combination thereof. Manufactured sand shall be well graded. - Fine aggregate shall conform to the following quality requirements: | | California | | |--|------------|---------------------------| | Test | Test | Requirements | | Organic Impurities | 213 | Satisfactory ^a | | Mortar Strengths Relative to Ottawa Sand | 515 | 95%, min. | | Sand Equivalent: | | | | Operating Range | 217 | 75, min. | | Contract Compliance | 217 | 71, min. | a Fine aggregate developing a color darker than the reference standard color solution may be accepted if it is determined by the Engineer, from mortar strength tests, that a darker color is acceptable. - In lieu of the above Sand Equivalent requirements, a Sand Equivalent "Operating Range" limit of 71 minimum and a Sand Equivalent "Contract Compliance" limit of 68 minimum will be used to determine the acceptability of the fine aggregate if the Contractor furnishes a Certificate of Compliance, as provided in Section 6-1.07, "Certificates of Compliance," certifying that: - 1. fine aggregate sampled at the completion of processing at the aggregate production plant had a Sand Equivalent value of not less than 82 when tested by California Test 217; and - 2. prequalification tests performed in conformance with California Test 549 indicated that the aggregate would develop a relative strength of not less than 95 percent and would have a relative shrinkage not greater than 105 percent, based on concrete. #### 90-2.03 WATER - In conventionally reinforced concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 1000 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In prestressed concrete work, the water for curing, for washing aggregates, and for mixing shall be free from oil and shall not contain more than 650 parts per million of chlorides as Cl, when tested in conformance with California Test 422, nor more than 1300 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. In no case shall the water contain an amount of impurities that will cause either: 1) a change in the setting time of cement of more than 25 percent when tested in conformance with the requirements in ASTM Designation: C 191 or ASTM Designation: C 266 or 2) a reduction in the compressive strength of mortar at 14 days of more than 5 percent, when tested in conformance with the requirements in ASTM Designation: C 109. - In non-reinforced concrete work, the water for curing, for washing aggregates and for mixing shall be free from oil and shall not contain more than 2000 parts per million
of chlorides as Cl, when tested in conformance with California Test 422, or more than 1500 parts per million of sulfates as SO₄, when tested in conformance with California Test 417. - In addition to the above provisions, water for curing concrete shall not contain impurities in a sufficient amount to cause discoloration of the concrete or produce etching of the surface. - Water reclaimed from mixer wash-out operations may be used in mixing concrete. The water shall not contain coloring agents or more than 300 parts per million of alkalis ($Na_2O + 0.658 K_2O$) as determined on the filtrate. The specific gravity of the water shall not exceed 1.03 and shall not vary more than ± 0.010 during a day's operations. #### 90-2.04 ADMIXTURE MATERIALS - Admixture materials shall conform to the requirements in the following ASTM Designations: - A. Chemical Admixtures—ASTM Designation: C 494. - B. Air-entraining Admixtures—ASTM Designation: C 260. - C. Calcium Chloride—ASTM Designation: D 98. - D. Mineral Admixtures—Coal fly ash; raw or calcined natural pozzolan as specified in ASTM Designation: C618; silica fume conforming to the requirements in ASTM Designation: C1240, with reduction of mortar expansion of 80 percent, minimum, using the cement from the proposed mix design. - Unless otherwise specified in the special provisions, mineral admixtures shall be used in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures." #### 90-3 AGGREGATE GRADINGS #### **90-3.01 GENERAL** - Before beginning concrete work, the Contractor shall submit in writing to the Engineer the gradation of the primary aggregate nominal sizes that the Contractor proposes to furnish. If a primary coarse aggregate or the fine aggregate is separated into 2 or more sizes, the proposed gradation shall consist of the gradation for each individual size, and the proposed proportions of each individual size, combined mathematically to indicate one proposed gradation. The proposed gradation shall meet the grading requirements shown in the table in this section, and shall show the percentage passing each of the sieve sizes used in determining the end result. - The Engineer may waive, in writing, the gradation requirements in this Section 90-3.01 and in Sections 90-3.02, "Coarse Aggregate Grading," 90-3.03, "Fine Aggregate Grading," and 90-3.04, "Combined Aggregate Gradings," if, in the Engineer's opinion, furnishing the gradation is not necessary for the type or amount of concrete work to be constructed. Gradations proposed by the Contractor shall be within the following percentage passing limits: | Primary Aggregate Nominal Size | Sieve Size | Limits of Proposed Gradation | |--------------------------------|------------|------------------------------| | 37.5-mm x 19-mm | 25-mm | 19 - 41 | | 25-mm x 4.75-mm | 19-mm | 52 - 85 | | 25-mm x 4.75-mm | 9.5-mm | 15 - 38 | | 12.5-mm x 4.75-mm | 9.5-mm | 40 - 78 | | 9.5-mm x 2.36-mm | 9.5-mm | 50 - 85 | | Fine Aggregate | 1.18-mm | 55 - 75 | | Fine Aggregate | 600-μm | 34 - 46 | | Fine Aggregate | 300-μm | 16 - 29 | • Should the Contractor change the source of supply, the Contractor shall submit in writing to the Engineer the new gradations before their intended use. #### 90-3.02 COARSE AGGREGATE GRADING • The grading requirements for coarse aggregates are shown in the following table for each size of coarse aggregate: | | Percentage Passing Primary Aggregate Nominal Sizes | | | | | | | | |-------------|--|------------|-----------------|------------|-------------------|------------|------------------|------------| | | 37.5-mn | n x 19-mm | 25-mm x 4.75-mm | | 12.5-mm x 4.75-mm | | 9.5-mm x 2.36-mm | | | | Operating | Contract | Operating | Contract | Operating | Contract | Operating | Contract | | Sieve Sizes | Range | Compliance | Range | Compliance | Range | Compliance | Range | Compliance | | 50-mm | 100 | 100 | | | _ | | | | | 37.5-mm | 88-100 | 85-100 | 100 | 100 | _ | _ | _ | _ | | 25-mm | x ± 18 | $X \pm 25$ | 88-100 | 86-100 | | | _ | | | 19-mm | 0-17 | 0-20 | $X \pm 15$ | $X \pm 22$ | 100 | 100 | _ | | | 12.5-mm | | | | | 82-100 | 80-100 | 100 | 100 | | 9.5-mm | 0-7 | 0-9 | $X \pm 15$ | $X \pm 22$ | $X \pm 15$ | $X \pm 22$ | $X \pm 15$ | $X \pm 20$ | | 4.75-mm | | | 0-16 | 0-18 | 0-15 | 0-18 | 0-25 | 0-28 | | 2.36-mm | _ | _ | 0-6 | 0-7 | 0-6 | 0-7 | 0-6 | 0-7 | - In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General." - Coarse aggregate for the 37.5-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," shall be furnished in 2 or more primary aggregate nominal sizes. Each primary aggregate nominal size may be separated into 2 sizes and stored separately, provided that the combined material conforms to the grading requirements for that particular primary aggregate nominal size. - When the 25-mm, maximum, combined aggregate grading as provided in Section 90-3.04, "Combined Aggregate Gradings," is to be used, the coarse aggregate may be separated into 2 sizes and stored separately, provided that the combined material shall conform to the grading requirements for the 25-mm x 4.75-mm primary aggregate nominal size. #### 90-3.03 FINE AGGREGATE GRADING • Fine aggregate shall be graded within the following limits: | | Percentage Passing | | | | |-------------|-------------------------------|-----------|--|--| | Sieve Sizes | Operating Range Contract Comp | | | | | 9.5-mm | 100 | 100 | | | | 4.75-mm | 95-100 | 93-100 | | | | 2.36-mm | 65-95 | 61-99 | | | | 1.18-mm | X ± 10 | X ± 13 | | | | 600-μm | $X \pm 9$ | X ± 12 | | | | 300-μm | $X \pm 6$ | $X \pm 9$ | | | | 150-μm | 2-12 | 1-15 | | | | 75-μm | 0-8 | 0-10 | | | - In the above table, the symbol X is the gradation that the Contractor proposes to furnish for the specific sieve size as provided in Section 90-3.01, "General." - In addition to the above required grading analysis, the distribution of the fine aggregate sizes shall be such that the difference between the total percentage passing the 1.18-mm sieve and the total percentage passing the 600- μ m sieves shall be between 10 and 40, and the difference between the percentage passing the 600- μ m and 300- μ m sieves shall be between 10 and 40. - Fine aggregate may be separated into 2 or more sizes and stored separately, provided that the combined material conforms to the grading requirements specified in this Section 90-3.03. #### 90-3.04 COMBINED AGGREGATE GRADINGS - Combined aggregate grading limits shall be used only for the design of concrete mixes. Concrete mixes shall be designed so that aggregates are combined in proportions that shall produce a mixture within the grading limits for combined aggregates as specified herein. Within these limitations, the relative proportions shall be as ordered by the Engineer, except as otherwise provided in Section 90-1.01, "Description." - The combined aggregate grading used in portland cement concrete pavement shall be the 37.5-mm, maximum grading. - The combined aggregate grading used in concrete for structures and other concrete items, except when specified otherwise in these specifications or the special provisions, shall be either the 37.5-mm, maximum grading, or the 25-mm, maximum grading, at the option of the Contractor. Grading Limits of Combined Aggregates | | Percentage Passing | | | | |-------------|--------------------|------------|--------------|-------------| | Sieve Sizes | 37.5-mm Max. | 25-mm Max. | 12.5-mm Max. | 9.5-mm Max. | | 50-mm | 100 | _ | _ | _ | | 37.5-mm | 90-100 | 100 | _ | _ | | 25-mm | 50-86 | 90-100 | _ | _ | | 19-mm | 45-75 | 55-100 | 100 | _ | | 12.5-mm | _ | _ | 90-100 | 100 | | 9.5-mm | 38-55 | 45-75 | 55-86 | 50 - 100 | | 4.75-mm | 30-45 | 35-60 | 45-63 | 45 - 63 | | 2.36-mm | 23-38 | 27-45 | 35-49 | 35 - 49 | | 1.18-mm | 17-33 | 20-35 | 25-37 | 25 - 37 | | 600-μm | 10-22 | 12-25 | 15-25 | 15 - 25 | | 300-μm | 4-10 | 5-15 | 5-15 | 5 - 15 | | 150-μm | 1-6 | 1-8 | 1-8 | 1 - 8 | | 75-μm | 0-3 | 0-4 | 0-4 | 0 - 4 | • Changes from one grading to another shall not be made during the progress of the work unless permitted by the Engineer. #### 90-4 ADMIXTURES #### 90-4.01 GENERAL - Admixtures used in portland cement concrete shall conform to and be used in conformance with the provisions in this Section 90-4 and the special provisions. Admixtures shall be used when specified or ordered by the Engineer and may be used at the Contractor's option as provided herein. - Chemical admixtures and air-entraining admixtures containing chlorides as Cl in excess of one percent by mass of admixture, as determined by California Test 415, shall not be used in prestressed or reinforced concrete. - Calcium chloride shall not be used in concrete containing steel reinforcement or other embedded metals. - Mineral admixture used in concrete for exposed surfaces of like elements of a structure shall be from the same source and of the same percentage. - Admixtures shall be uniform in properties throughout their use in the work. Should it be found that an admixture as furnished is not uniform in properties, its use shall be discontinued. - If more than one admixture is used, the admixtures shall be compatible with each other so that the desirable effects of all admixtures used will be realized. #### **90-4.02 MATERIALS** Admixture materials shall conform to the provisions in Section 90–2.04, "Admixture Materials." #### 90-4.03 ADMIXTURE APPROVAL - No admixture brand shall be used in the work unless it is on the Department's current list of approved brands for the type of admixture involved. - Admixture brands will be considered for addition to the approved list if the manufacturer of the admixture submits to the Transportation Laboratory a sample of the admixture accompanied by certified test results demonstrating that
the admixture complies with the requirements in the appropriate ASTM Designation and these specifications. The sample shall be sufficient to permit performance of all required tests. Approval of admixture brands will be dependent upon a determination as to compliance with the requirements, based on the certified test results submitted, together with tests the Department may elect to perform. - When the Contractor proposes to use an admixture of a brand and type on the current list of approved admixture brands, the Contractor shall furnish a Certificate of Compliance from the manufacturer, as provided in Section 6-1.07, "Certificates of Compliance," certifying that the admixture furnished is the same as that previously approved. If a previously approved admixture is not accompanied by a Certificate of Compliance, the admixture shall not be used in the work until the Engineer has had sufficient time to make the appropriate tests and has approved the admixture for use. The Engineer may take samples for testing at any time, whether or not the admixture has been accompanied by a Certificate of Compliance. - If a mineral admixture is delivered directly to the site of the work, the Certificate of Compliance shall be signed by the manufacturer or supplier of the mineral admixture. If the mineral admixture is used in ready-mix concrete or in precast concrete products purchased as such by the Contractor, the Certificate of Compliance shall be signed by the manufacturer of the concrete or product. #### 90-4.04 REQUIRED USE OF CHEMICAL ADMIXTURES AND CALCIUM CHLORIDE - When the use of a chemical admixture or calcium chloride is specified or ordered by the Engineer, the admixture shall be used at the dosage specified or ordered, except that if no dosage is specified or ordered, the admixture shall be used at the dosage normally recommended by the manufacturer of the admixture. - Calcium chloride shall be dispensed in liquid, flake, or pellet form. Calcium chloride dispensed in liquid form shall conform to the provisions for dispensing liquid admixtures in Section 90-4.10, "Proportioning and Dispensing Liquid Admixtures." #### 90-4.05 OPTIONAL USE OF CHEMICAL ADMIXTURES - The Contractor will be permitted to use Type A or F, water-reducing; Type B, retarding; or Type D or G, water-reducing and retarding admixtures as described in ASTM Designation: C 494 to conserve cementitious material or to facilitate any concrete construction application subject to the following conditions: - A. When a water-reducing admixture or a water-reducing and retarding admixture is used, the cementitious material content specified or ordered may be reduced by a maximum of 5 percent by mass, except that the resultant cementitious material content shall be not less than 300 kilograms per cubic meter; and - B. When a reduction in cementitious material content is made, the dosage of admixture used shall be the dosage used in determining approval of the admixture. • Unless otherwise specified, a Type C accelerating chemical admixture conforming to the requirements in ASTM Designation: C 494, may be used in portland cement concrete. Inclusion in the mix design submitted for approval will not be required provided that the admixture is added to counteract changing conditions that contribute to delayed setting of the portland cement concrete, and the use or change in dosage of the admixture is approved in writing by the Engineer. #### 90-4.06 REQUIRED USE OF AIR-ENTRAINING ADMIXTURES • When air-entrainment is specified or ordered by the Engineer, the air-entraining admixture shall be used in amounts to produce a concrete having the specified air content as determined by California Test 504. #### 90-4.07 OPTIONAL USE OF AIR-ENTRAINING ADMIXTURES • When air-entrainment has not been specified or ordered by the Engineer, the Contractor will be permitted to use an air-entraining admixture to facilitate the use of any construction procedure or equipment provided that the average air content, as determined by California Test 504, of 3 successive tests does not exceed 4 percent, and no single test value exceeds 5.5 percent. If the Contractor elects to use an air-entraining admixture in concrete for pavement, the Contractor shall so indicate at the time the Contractor designates the source of aggregate as provided in Section 40-1.015, "Cement Content." #### 90-4.08 REQUIRED USE OF MINERAL ADMIXTURES - Unless otherwise specified, mineral admixture shall be combined with cement to make cementitious material. - The calcium oxide content of mineral admixtures shall not exceed 10 percent and the available alkali, as sodium oxide equivalent, shall not exceed 1.5 percent when determined in conformance with the requirements in ASTM Designation: C 618. - The amounts of cement and mineral admixture used in cementitious material shall be sufficient to satisfy the minimum cementitious material content requirements specified in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," and shall conform to the following: - A. The minimum amount of cement shall not be less than 75 percent by mass of the specified minimum cementitious material content: - B. The minimum amount of mineral admixture to be combined with cement shall be determined using one of the following criteria: - 1. When the calcium oxide content of a mineral admixture is equal to or less than 2 percent by mass, the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix. - 2. When the calcium oxide content of a mineral admixture is greater than 2 percent, the amount of mineral admixture shall not be less than 25 percent by mass of the total amount of cementitious material to be used in the mix: - 3. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," is used, the amount of mineral admixture shall not be less than 10 percent by mass of the total amount of cementitious material to be used in the mix - C. The total amount of mineral admixture shall not exceed 35 percent by mass of the total amount of cementitious material to be used in the mix. Where Section 90-1.01, "Description," specifies a maximum cementitious content in kilograms per cubic meter, the total mass of cement and mineral admixture per cubic meter shall not exceed the specified maximum cementitious material content. #### 90-4.09 BLANK #### 90-4.10 PROPORTIONING AND DISPENSING LIQUID ADMIXTURES - Chemical admixtures and air-entraining admixtures shall be dispensed in liquid form. Dispensers for liquid admixtures shall have sufficient capacity to measure at one time the prescribed quantity required for each batch of concrete. Each dispenser shall include a graduated measuring unit into which liquid admixtures are measured to within ± 5 percent of the prescribed quantity for each batch. Dispensers shall be located and maintained so that the graduations can be accurately read from the point at which proportioning operations are controlled to permit a visual check of batching accuracy prior to discharge. Each measuring unit shall be clearly marked for the type and quantity of admixture. - Each liquid admixture dispensing system shall be equipped with a sampling device consisting of a valve located in a safe and readily accessible position such that a sample of the admixture may be withdrawn slowly by the Engineer. - If more than one liquid admixture is used in the concrete mix, each liquid admixture shall have a separate measuring unit and shall be dispensed by injecting equipment located in such a manner that the admixtures are not mixed at high concentrations and do not interfere with the effectiveness of each other. When air-entraining admixtures are used in conjunction with other liquid admixtures, the air-entraining admixture shall be the first to be incorporated into the mix. - When automatic proportioning devices are required for concrete pavement, dispensers for liquid admixtures shall operate automatically with the batching control equipment. The dispensers shall be equipped with an automatic warning system in good operating condition that will provide a visible or audible signal at the point at which proportioning operations are controlled when the quantity of admixture measured for each batch of concrete varies from the preselected dosage by more than 5 percent, or when the entire contents of the measuring unit are not emptied from the dispenser into each batch of concrete. - Unless liquid admixtures are added to premeasured water for the batch, their discharge into the batch shall be arranged to flow into the stream of water so that the admixtures are well dispersed throughout the batch, except that air-entraining admixtures may be dispensed directly into moist sand in the batching bins provided that adequate control of the air content of the concrete can be maintained. - Liquid admixtures requiring dosages greater than 2.5 L/m³ shall be considered to be water when determining the total amount of free water as specified in Section 90-6.06, "Amount of Water and Penetration." - Special admixtures, such as "high range" water reducers that may contribute to a high rate of slump loss, shall be measured and dispensed as recommended by the admixture manufacturer and as approved by the Engineer. #### 90-4.11 STORAGE, PROPORTIONING, AND DISPENSING OF MINERAL ADMIXTURES - Mineral admixtures shall be protected from exposure to moisture until used. Sacked material shall be piled to permit access for tally, inspection and identification for each shipment. - Adequate facilities shall be provided to assure that mineral admixtures meeting the specified requirements are kept separate from other mineral admixtures in order to prevent any but the specified mineral admixtures from entering the work. Safe and suitable facilities for sampling mineral admixtures shall be provided at
the weigh hopper or in the feed line immediately in advance of the hopper. - Mineral admixtures shall be incorporated into concrete using equipment conforming to the requirements for cement weigh hoppers, and charging and discharging mechanisms in ASTM Designation: C 94, in Section 90-5.03, "Proportioning," and in this Section 90-4.11. - When concrete is completely mixed in stationary paving mixers, the mineral admixture shall be weighed in a separate weigh hopper conforming to the provisions for cement weigh hoppers and charging and discharging mechanisms in Section 90-5.03A, "Proportioning for Pavement," and the mineral admixture and cement shall be introduced simultaneously into the mixer proportionately with the aggregate. If the mineral admixture is not weighed in a separate weigh hopper, the Contractor shall provide certification that the stationary mixer is capable of mixing the cement, admixture, aggregates and water uniformly prior to discharge. Certification shall contain the following: - A. Test results for 2 compressive strength test cylinders of concrete taken within the first one-third and 2 compressive strength test cylinders of concrete taken within the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" - B. Calculations demonstrating that the difference in the averages of 2 compressive strengths taken in the first one-third is no greater than 7.5 percent different than the averages of 2 compressive strengths taken in the last one-third of the concrete discharged from a single batch from the stationary paving mixer. Strength tests and cylinder preparation will be in conformance with the provisions of Section 90-9, "Compressive Strength;" and - C. The mixer rotation speed and time of mixing prior to discharge that are required to produce a mix that meets the requirements above. #### 90-5 PROPORTIONING #### 90-5.01 STORAGE OF AGGREGATES - Aggregates shall be stored or stockpiled in such a manner that separation of coarse and fine particles of each size shall be avoided and also that the various sizes shall not become intermixed before proportioning. - Aggregates shall be stored or stockpiled and handled in a manner that shall prevent contamination by foreign materials. In addition, storage of aggregates at batching or mixing facilities that are erected subsequent to the award of the contract and that furnish concrete to the project shall conform to the following: - A. Intermingling of the different sizes of aggregates shall be positively prevented. The Contractor shall take the necessary measures to prevent intermingling. The preventive measures may include, but are not necessarily limited to, physical separation of stockpiles or construction of bulkheads of adequate length and height; and - B. Contamination of aggregates by contact with the ground shall be positively prevented. The Contractor shall take the necessary measures to prevent contamination. The preventive measures shall include, but are not necessarily limited to, placing aggregates on wooden platforms or on hardened surfaces consisting of portland cement concrete, asphalt concrete, or cement treated material. - In placing aggregates in storage or in moving the aggregates from storage to the weigh hopper of the batching plant, any method that may cause segregation, degradation, or the combining of materials of different gradings that will result in any size of aggregate at the weigh hopper failing to meet the grading requirements, shall be discontinued. Any method of handling aggregates that results in excessive breakage of particles shall be discontinued. The use of suitable devices to reduce impact of falling aggregates may be required by the Engineer. ## 90-5.02 PROPORTIONING DEVICES - Weighing, measuring, or metering devices used for proportioning materials shall conform to the requirements in Section 9-1.01, "Measurement of Quantities," and this Section 90-5.02. In addition, automatic weighing systems shall comply with the requirements for automatic proportioning devices in Section 90-5.03A, "Proportioning for Pavement." Automatic devices shall be automatic to the extent that the only manual operation required for proportioning the aggregates, cement, and mineral admixture for one batch of concrete is a single operation of a switch or starter. - Proportioning devices shall be tested at the expense of the Contractor as frequently as the Engineer may deem necessary to ensure their accuracy. - Weighing equipment shall be insulated against vibration or movement of other operating equipment in the plant. When the plant is in operation, the mass of each batch of material shall not vary from the mass designated by the Engineer by more than the tolerances specified herein. - Equipment for cumulative weighing of aggregate shall have a zero tolerance of ± 0.5 percent of the designated total batch mass of the aggregate. For systems with individual weigh hoppers for the various sizes of aggregate, the zero tolerance shall be ± 0.5 percent of the individual batch mass designated for each size of aggregate. Equipment for cumulative weighing of cement and mineral admixtures shall have a zero tolerance of ± 0.5 percent of the designated total batch mass of the cement and mineral admixture. Equipment for weighing cement or mineral admixture separately shall have a zero tolerance of ± 0.5 percent of their designated individual batch masses. Equipment for measuring water shall have a zero tolerance of ± 0.5 percent of its designated mass or volume. - The mass indicated for any batch of material shall not vary from the preselected scale setting by more than the following: - A. Aggregate weighed cumulatively shall be within 1.0 percent of the designated total batch mass of the aggregate. Aggregates weighed individually shall be within 1.5 percent of their respective designated batch masses; and - B. Cement shall be within 1.0 percent of its designated batch mass. When weighed individually, mineral admixture shall be within 1.0 percent of its designated batch mass. When mineral admixture and cement are permitted to be weighed cumulatively, cement shall be weighed first to within 1.0 percent of its designated batch mass, and the total for cement and mineral admixture shall be within 1.0 percent of the sum of their designated batch masses; and - C. Water shall be within 1.5 percent of its designated mass or volume. - Each scale graduation shall be approximately 0.001 of the total capacity of the scale. The capacity of scales for weighing cement, mineral admixture, or cement plus mineral admixture and aggregates shall not exceed that of commercially available scales having single graduations indicating a mass not exceeding the maximum permissible mass variation above, except that no scale shall be required having a capacity of less than 500 kg, with 0.5-kg graduations. ## 90-5.03 PROPORTIONING - Proportioning shall consist of dividing the aggregates into the specified sizes, each stored in a separate bin, and combining them with cement, mineral admixture, and water as provided in these specifications. Aggregates shall be proportioned by mass. - At the time of batching, aggregates shall have been dried or drained sufficiently to result in a stable moisture content such that no visible separation of water from aggregate will take place during transportation from the proportioning plant to the point of mixing. In no event shall the free moisture content of the fine aggregate at the time of batching exceed 8 percent of its saturated, surface-dry mass. - Should separate supplies of aggregate material of the same size group, but of different moisture content or specific gravity or surface characteristics affecting workability, be available at the proportioning plant, withdrawals shall be made from one supply exclusively and the materials therein completely exhausted before starting upon another. - Bulk "Type IP (MS) Modified" cement shall be weighed in an individual hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. - Bulk cement and mineral admixture may be weighed in separate, individual weigh hoppers or may be weighed in the same weigh hopper and shall be kept separate from the aggregates until the ingredients are released for discharge into the mixer. If the cement and mineral admixture are weighed cumulatively, the cement shall be weighed first. - When cement and mineral admixtures are weighed in separate weigh hoppers, the weigh systems for the proportioning of the aggregate, the cement, and the mineral admixture shall be individual and distinct from all other weigh systems. Each weigh system shall be equipped with a hopper, a lever system, and an indicator to constitute an individual and independent material weighing device. The cement and the mineral admixture shall be discharged into the mixer simultaneously with the aggregate. - The scales and weigh hoppers for bulk weighing cement, mineral admixture, or cement plus mineral admixture shall be separate and distinct from the aggregate weighing equipment. - For batches with a volume of one cubic meter or more, the batching equipment shall conform to one of the following combinations: - A. Separate boxes and separate scale and indicator for weighing each size of aggregate. - B. Single box and scale indicator for all aggregates. - C. Single box or separate boxes and automatic weighing mechanism for all aggregates. - In order to check the accuracy of batch masses, the gross mass and tare mass of batch trucks, truck mixers, truck agitators, and non-agitating hauling equipment shall be determined when ordered by the Engineer. The equipment shall be weighed at the Contractor's expense on scales designated by the Engineer. ## 90-5.03A Proportioning for
Pavement - Aggregates and bulk cement, mineral admixture, and cement plus mineral admixture for use in pavement shall be proportioned by mass by means of automatic proportioning devices of approved type conforming to these specifications. - The Contractor shall install and maintain in operating condition an electronically actuated moisture meter that will indicate, on a readily visible scale, changes in the moisture content of the fine aggregate as it is batched within a sensitivity of 0.5 percent by mass of the fine aggregate. - The batching of cement, mineral admixture, or cement plus mineral admixture and aggregate shall be interlocked so that a new batch cannot be started until all weigh hoppers are empty, the proportioning devices are within zero tolerance, and the discharge gates are closed. The interlock shall permit no part of the batch to be discharged until all aggregate hoppers and the cement and mineral admixture hoppers or the cement plus mineral admixture hopper are charged with masses that are within the tolerances specified in Section 90-5.02, "Proportioning Devices." - When interlocks are required for cement and mineral admixture charging mechanisms and cement and mineral admixtures are weighed cumulatively, their charging mechanisms shall be interlocked to prevent the introduction of mineral admixture until the mass of cement in the cement weigh hopper is within the tolerances specified in Section 90-5.02, "Proportioning Devices." - The discharge gate on the cement and mineral admixture hoppers or the cement plus mineral admixture hopper shall be designed to permit regulating the flow of cement, mineral admixture, or cement plus mineral admixture into the aggregate as directed by the Engineer. - When separate weigh boxes are used for each size of aggregate, the discharge gates shall permit regulating the flow of each size of aggregate as directed by the Engineer. - Material discharged from the several bins shall be controlled by gates or by mechanical conveyors. The means of withdrawal from the several bins, and of discharge from the weigh box, shall be interlocked so that not more than one bin can discharge at a time, and so that the weigh box cannot be tripped until the required quantity from each of the several bins has been deposited therein. Should a separate weigh box be used for each size of aggregate, all may be operated and discharged simultaneously. - When the discharge from the several bins is controlled by gates, each gate shall be actuated automatically so that the required mass is discharged into the weigh box, after which the gate shall automatically close and lock. - The automatic weighing system shall be designed so that all proportions required may be set on the weighing controller at the same time. ## 90-6 MIXING AND TRANSPORTING #### **90-6.01 GENERAL** - Concrete shall be mixed in mechanically operated mixers, except that when permitted by the Engineer, batches not exceeding 0.25 m³ may be mixed by hand methods in conformance with the provisions in Section 90-6.05, "Hand-Mixing." - Equipment having components made of aluminum or magnesium alloys that would have contact with plastic concrete during mixing, transporting, or pumping of portland cement concrete shall not be used. - Concrete shall be homogeneous and thoroughly mixed, and there shall be no lumps or evidence of undispersed cement, mineral admixture, or cement plus mineral admixture. - Uniformity of concrete mixtures will be determined by differences in penetration as determined by California Test 533, or slump as determined by ASTM Designation: C 143, and by variations in the proportion of coarse aggregate as determined by California Test 529. - When the mix design specifies a penetration value, the difference in penetration, determined by comparing penetration tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed 10 mm. When the mix design specifies a slump value, the difference in slump, determined by comparing slump tests on 2 samples of mixed concrete from the same batch or truck mixer load, shall not exceed the values given in the table below. Variation in the proportion of coarse aggregate will be determined by comparing the results of tests of 2 samples of mixed concrete from the same batch or truck mixer load and the difference between the 2 results shall not exceed 100 kg per cubic meter of concrete. | Average Slump | Maximum Permissible Difference | | |-------------------------------|--------------------------------|--| | Less than 100-mm | 25-mm | | | 100-mm to 150-mm | 38-mm | | | Greater than 150-mm to 225-mm | 50-mm | | • The Contractor, at the Contractor's expense, shall furnish samples of the freshly mixed concrete and provide satisfactory facilities for obtaining the samples. #### 90-6.02 MACHINE MIXING - Concrete mixers may be of the revolving drum or the revolving blade type, and the mixing drum or blades shall be operated uniformly at the mixing speed recommended by the manufacturer. Mixers and agitators that have an accumulation of hard concrete or mortar shall not be used. - The temperature of mixed concrete, immediately before placing, shall be not less than 10°C or more than 32°C. Aggregates and water shall be heated or cooled as necessary to produce concrete within these temperature limits. Neither aggregates nor mixing water shall be heated to exceed 65°C. If ice is used to cool the concrete, discharge of the mixer will not be permitted until all ice is melted. - The batch shall be so charged into the mixer that some water will enter in advance of cementitious materials and aggregates. All water shall be in the drum by the end of the first one fourth of the specified mixing time. - Cementitious materials shall be batched and charged into the mixer by means that will not result either in loss of cementitious materials due to the effect of wind, in accumulation of cementitious materials on surfaces of conveyors or hoppers, or in other conditions that reduce or vary the required quantity of cementitious material in the concrete mixture. - Paving and stationary mixers shall be operated with an automatic timing device. The timing device and discharge mechanism shall be interlocked so that during normal operation no part of the batch will be discharged until the specified mixing time has elapsed. - The total elapsed time between the intermingling of damp aggregates and all cementitious materials and the start of mixing shall not exceed 30 minutes. - The size of batch shall not exceed the manufacturer's guaranteed capacity. - When producing concrete for pavement or base, suitable batch counters shall be installed and maintained in good operating condition at jobsite batching plants and stationary mixers. The batch counters shall indicate the exact number of batches proportioned and mixed. - Concrete shall be mixed and delivered to the jobsite by means of one of the following combinations of operations: - A. Mixed completely in a stationary mixer and the mixed concrete transported to the point of delivery in truck agitators or in non-agitating hauling equipment (central-mixed concrete). - B. Mixed partially in a stationary mixer, and the mixing completed in a truck mixer (shrink-mixed concrete). - C. Mixed completely in a truck mixer (transit-mixed concrete). - D. Mixed completely in a paving mixer. - Agitators may be truck mixers operating at agitating speed or truck agitators. Each mixer and agitator shall have attached thereto in a prominent place a metal plate or plates on which is plainly marked the various uses for which the equipment is designed, the manufacturer's guaranteed capacity of the drum or container in terms of the volume of mixed concrete and the speed of rotation of the mixing drum or blades. - Truck mixers shall be equipped with electrically or mechanically actuated revolution counters by which the number of revolutions of the drum or blades may readily be verified. - When shrink-mixed concrete is furnished, concrete that has been partially mixed at a central plant shall be transferred to a truck mixer and all requirements for transit-mixed concrete shall apply. No credit in the number of revolutions at mixing speed shall be allowed for partial mixing in a central plant. #### 90-6.03 TRANSPORTING MIXED CONCRETE - Mixed concrete may be transported to the delivery point in truck agitators or truck mixers operating at the speed designated by the manufacturer of the equipment as agitating speed, or in non-agitating hauling equipment, provided the consistency and workability of the mixed concrete upon discharge at the delivery point is suitable for adequate placement and consolidation in place, and provided the mixed concrete after hauling to the delivery point conforms to the provisions in Section 90-6.01, "General." - Truck agitators shall be loaded not to exceed the manufacturer's guaranteed capacity and shall maintain the mixed concrete in a thoroughly mixed and uniform mass during hauling. - Bodies of non-agitating hauling equipment shall be constructed so that leakage of the concrete mix, or any part thereof, will not occur at any time. - Concrete hauled in open-top vehicles shall be protected during hauling against rain or against exposure to the sun for more than 20 minutes when the ambient temperature exceeds 24°C. - No additional mixing water shall be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer. If the Engineer authorizes additional water to be incorporated into the concrete, the drum shall be revolved not less than 30 revolutions at mixing speed after the water is added and before discharge is commenced. - The rate of discharge of mixed concrete from truck mixer-agitators shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open. - When a truck mixer or agitator is used for transporting
concrete to the delivery point, discharge shall be completed within 1.5 hours or before 250 revolutions of the drum or blades, whichever occurs first, after the introduction of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time allowed may be less than 1.5 hours. - When non-agitating hauling equipment is used for transporting concrete to the delivery point, discharge shall be completed within one hour after the addition of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete, or when the temperature of the concrete is 30°C or above, the time between the introduction of cement to the aggregates and discharge shall not exceed 45 minutes. - Each load of concrete delivered at the jobsite shall be accompanied by a weighmaster certificate showing the mix identification number, non-repeating load number, date and time at which the materials were batched, the total amount of water added to the load, and for transit-mixed concrete, the reading of the revolution counter at the time the truck mixer is charged with cement. This weighmaster certificate shall also show the actual scale masses (kilograms) for the ingredients batched. Theoretical or target batch masses shall not be used as a substitute for actual scale masses. - Weighmaster certificates shall be provided in printed form, or if approved by the Engineer, the data may be submitted in electronic media. Electronic media shall be presented in a tab-delimited format on a 90 mm diskette with a capacity of at least 1.4 megabytes. Captured data, for the ingredients represented by each batch shall be "line feed, carriage return" (LFCR) and "one line, separate record" with allowances for sufficient fields to satisfy the amount of data required by these specifications. - The Contractor may furnish a weighmaster certificate accompanied by a separate certificate that lists the actual batch masses or measurements for a load of concrete provided that both certificates are imprinted with the same non-repeating load number that is unique to the contract and delivered to the jobsite with the load. - Weighmaster certificates furnished by the Contractor shall conform to the provisions in Section 9-1.01, "Measurement of Quantities." ## 90-6.04 TIME OR AMOUNT OF MIXING • Mixing of concrete in paving or stationary mixers shall continue for the required mixing time after all ingredients, except water and admixture, if added with the water, are in the mixing compartment of the mixer before any part of the batch is released. Transfer time in multiple drum mixers shall not be counted as part of the required mixing time. - The required mixing time, in paving or stationary mixers, of concrete used for concrete structures, except minor structures, shall be not less than 90 seconds or more than 5 minutes, except that when directed by the Engineer in writing, the requirements of the following paragraph shall apply. - The required mixing time, in paving or stationary mixers, except as provided in the preceding paragraph, shall be not less than 50 seconds or more than 5 minutes. - The minimum required revolutions at the mixing speed for transit-mixed concrete shall not be less than that recommended by the mixer manufacturer, but in no case shall the number of revolutions be less than that required to consistently produce concrete conforming to the provisions for uniformity in Section 90-6.01, "General." ## **90-6.05 HAND-MIXING** • Hand-mixed concrete shall be made in batches of not more than 0.25 m³ and shall be mixed on a watertight, level platform. The proper amount of coarse aggregate shall be measured in measuring boxes and spread on the platform and the fine aggregate shall be spread on this layer, the 2 layers being not more than 0.3 meters in total depth. On this mixture shall be spread the dry cement and mineral admixture and the whole mass turned no fewer than 2 times dry; then sufficient clean water shall be added, evenly distributed, and the whole mass again turned no fewer than 3 times, not including placing in the carriers or forms. ## 90-6.06 AMOUNT OF WATER AND PENETRATION • The amount of water used in concrete mixes shall be regulated so that the penetration of the concrete as determined by California Test 533 or the slump of the concrete as determined by ASTM Designation: C 143 is within the "Nominal" values shown in the following table. When the penetration or slump of the concrete is found to exceed the nominal values listed, the mixture of subsequent batches shall be adjusted to reduce the penetration or slump to a value within the nominal range shown. Batches of concrete with a penetration or slump exceeding the maximum values listed shall not be used in the work. When Type F or Type G chemical admixtures are added to the mix, the penetration requirements shall not apply and the slump shall not exceed 225 mm after the chemical admixtures are added. | Type of Work | Non | Nominal | | Maximum | | |------------------------------------|-------------|---------|-------------|---------|--| | | Penetration | Slump | Penetration | Slump | | | | (mm) | (mm) | (mm) | (mm) | | | Concrete Pavement | 0-25 | _ | 40 | _ | | | Non-reinforced concrete facilities | 0-35 | _ | 50 | _ | | | Reinforced concrete structures | | | | | | | Sections over 300-mm thick | 0-35 | _ | 65 | | | | Sections 300-mm thick or less | 0-50 | _ | 75 | | | | Concrete placed under water | _ | 150-200 | _ | 225 | | | Cast-in-place concrete piles | 65-90 | 130-180 | 100 | 200 | | - The amount of free water used in concrete shall not exceed 183 kg/m³, plus 20 kg for each required 100 kg of cementitious material in excess of 325 kg/m³. - The term free water is defined as the total water in the mixture minus the water absorbed by the aggregates in reaching a saturated surface-dry condition. - Where there are adverse or difficult conditions that affect the placing of concrete, the above specified penetration and free water content limitations may be exceeded providing the Contractor is granted permission by the Engineer in writing to increase the cementitious material content per cubic meter of concrete. The increase in water and cementitious material shall be at a ratio not to exceed 30 kg of water per added 100 kg of cementitious material per cubic meter. The cost of additional cementitious material and water added under these conditions shall be at the Contractor's expense and no additional compensation will be allowed therefor. - The equipment for supplying water to the mixer shall be constructed and arranged so that the amount of water added can be measured accurately. Any method of discharging water into the mixer for a batch shall be accurate within 1.5 percent of the quantity of water required to be added to the mix for any position of the mixer. Tanks used to measure water shall be designed so that water cannot enter while water is being discharged into the mixer and discharge into the mixer shall be made rapidly in one operation without dribbling. All equipment shall be arranged so as to permit checking the amount of water delivered by discharging into measured containers. #### 90-7 CURING CONCRETE #### 90-7.01 METHODS OF CURING • Newly placed concrete shall be cured by the methods specified in this Section 90-7.01 and the special provisions. #### 90-7.01A Water Method - The concrete shall be kept continuously wet by the application of water for a minimum curing period of 7 days after the concrete has been placed. - When a curing medium consisting of cotton mats, rugs, carpets, or earth or sand blankets is to be used to retain the moisture, the entire surface of the concrete shall be kept damp by applying water with a nozzle that so atomizes the flow that a mist and not a spray is formed, until the surface of the concrete is covered with the curing medium. The moisture from the nozzle shall not be applied under pressure directly upon the concrete and shall not be allowed to accumulate on the concrete in a quantity sufficient to cause a flow or wash the surface. At the expiration of the curing period, the concrete surfaces shall be cleared of all curing mediums. - When concrete bridge decks and flat slabs are to be cured without the use of a curing medium, the entire surface of the bridge deck or slab shall be kept damp by the application of water with an atomizing nozzle as specified in the preceding paragraph, until the concrete has set, after which the entire surface of the concrete shall be sprinkled continuously with water for a period of not less than 7 days. ## 90-7.01B Curing Compound Method - Surfaces of the concrete that are exposed to the air shall be sprayed uniformly with a curing compound. - Curing compounds to be used shall be as follows: - 1. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B, except the resin type shall be poly-alpha-methylstyrene. - 2. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class B. - 3. Pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 2, Class A. - 4. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class B. - 5. Non-pigmented curing compound conforming to the requirements in ASTM Designation: C 309, Type 1, Class A. - 6. Non-pigmented curing compound with fugitive dye conforming to the requirements in ASTM Designation: C 309, Type 1-D, Class A. - The infrared scan for the dried vehicle from curing compound (1) shall match the infrared scan on file at the Transportation Laboratory. - The loss of water for each type of curing compound, when tested in conformance with the requirements in California Test 534, shall not be more than 0.15-kg/m² in 24 hours or more than 0.45-kg/m² in 72 hours. - The curing compound to be used will be
specified elsewhere in these specifications or in the special provisions. - When the use of curing compound is required or permitted elsewhere in these specifications or in the special provisions and no specific kind is specified, any of the curing compounds listed above may be used. - Curing compound shall be applied at a nominal rate of 3.7 m²/L, unless otherwise specified. - At any point, the application rate shall be within ± 1.2 m²/L of the nominal rate specified, and the average application rate shall be within ± 0.5 m²/L of the nominal rate specified when tested in conformance with the requirements in California Test 535. Runs, sags, thin areas, skips, or holidays in the applied curing compound shall be evidence that the application is not satisfactory. - Curing compounds shall be applied using power operated spray equipment. The power operated spraying equipment shall be equipped with an operational pressure gage and a means of controlling the pressure. Hand spraying of small and irregular areas that are not reasonably accessible to mechanical spraying equipment, in the opinion of the Engineer, may be permitted. - The curing compound shall be applied to the concrete following the surface finishing operation, immediately before the moisture sheen disappears from the surface, but before any drying shrinkage or craze cracks begin to appear. In the event of any drying or cracking of the surface, application of water with an atomizing nozzle as specified in Section 90-7.01A, "Water Method," shall be started immediately and shall be continued until application of the compound is resumed or started; however, the compound shall not be applied over any resulting freestanding water. Should the film of compound be damaged from any cause before the expiration of 7 days after the concrete is placed in the case of structures and 72 hours in the case of pavement, the damaged portion shall be repaired immediately with additional compound. - At the time of use, compounds containing pigments shall be in a thoroughly mixed condition with the pigment uniformly dispersed throughout the vehicle. A paddle shall be used to loosen all settled pigment from the bottom of the container, and a power driven agitator shall be used to disperse the pigment uniformly throughout the vehicle. - Agitation shall not introduce air or other foreign substance into the curing compound. - The manufacturer shall include in the curing compound the necessary additives for control of sagging, pigment settling, leveling, de-emulsification, or other requisite qualities of a satisfactory working material. Pigmented curing compounds shall be manufactured so that the pigment does not settle badly, does not cake or thicken in the container, and does not become granular or curdled. Settlement of pigment shall be a thoroughly wetted, soft, mushy mass permitting the complete and easy vertical penetration of a paddle. Settled pigment shall be easily redispersed, with minimum resistance to the sideways manual motion of the paddle across the bottom of the container, to form a smooth uniform product of the proper consistency. - Curing compounds shall remain sprayable at temperatures above 4°C and shall not be diluted or altered after manufacture. - The curing compound shall be packaged in clean 210-L barrels or round 19-L containers or shall be supplied from a suitable storage tank located at the jobsite. The containers shall comply with "Title 49, Code of Federal Regulations, Hazardous Materials Regulations." The 210-L barrels shall have removable lids and airtight fasteners. The 19-L containers shall be round and have standard full open head and bail. Lids with bungholes shall not be permitted. On-site storage tanks shall be kept clean and free of contaminants. Each tank shall have a permanent system designed to completely redisperse settled material without introducing air or other foreign substances. - Steel containers and lids shall be lined with a coating that will prevent destructive action by the compound or chemical agents in the air space above the compound. The coating shall not come off the container or lid as skins. Containers shall be filled in a manner that will prevent skinning. Plastic containers shall not react with the compound. - Each container shall be labeled with the manufacturer's name, kind of curing compound, batch number, volume, date of manufacture, and volatile organic compound (VOC) content. The label shall also warn that the curing compound containing pigment shall be well stirred before use. Precautions concerning the handling and the application of curing compound shall be shown on the label of the curing compound containers in conformance with the Construction Safety Orders and General Industry Safety Orders of the State of California. - Containers of curing compound shall be labeled to indicate that the contents fully comply with the rules and regulations concerning air pollution control in the State of California. - When the curing compound is shipped in tanks or tank trucks, a shipping invoice shall accompany each load. The invoice shall contain the same information as that required herein for container labels. - Curing compound will be sampled by the Engineer at the source of supply or at the jobsite or at both locations. - Curing compound shall be formulated so as to maintain the specified properties for a minimum of one year. The Engineer may require additional testing before use to determine compliance with these specifications if the compound has not been used within one year or whenever the Engineer has reason to believe the compound is no longer satisfactory. - Tests will be conducted in conformance with the latest ASTM test methods and methods in use by the Transportation Laboratory. # 90-7.01C Waterproof Membrane Method - The exposed finished surfaces of concrete shall be sprayed with water, using a nozzle that so atomizes the flow that a mist and not a spray is formed, until the concrete has set, after which the curing membrane shall be placed. The curing membrane shall remain in place for a period of not less than 72 hours. - Sheeting material for curing concrete shall conform to the requirements in AASHTO Designation: M 171 for white reflective materials. - The sheeting material shall be fabricated into sheets of such width as to provide a complete cover for the entire concrete surface. Joints in the sheets shall be securely cemented together in such a manner as to provide a waterproof joint. The joint seams shall have a minimum lap of 100 mm. - The sheets shall be securely weighted down by placing a bank of earth on the edges of the sheets or by other means satisfactory to the Engineer. - Should any portion of the sheets be broken or damaged before the expiration of 72 hours after being placed, the broken or damaged portions shall be immediately repaired with new sheets properly cemented into place. - Sections of membrane that have lost their waterproof qualities or have been damaged to such an extent as to render them unfit for curing the concrete shall not be used. #### 90-7.01D Forms-In-Place Method • Formed surfaces of concrete may be cured by retaining the forms in place. The forms shall remain in place for a minimum period of 7 days after the concrete has been placed, except that for members over 0.5-m in least dimension the forms shall remain in place for a minimum period of 5 days. • Joints in the forms and the joints between the end of forms and concrete shall be kept moisture tight during the curing period. Cracks in the forms and cracks between the forms and the concrete shall be resealed by methods subject to the approval of the Engineer. #### 90-7.02 CURING PAVEMENT - The entire exposed area of the pavement, including edges, shall be cured by the waterproof membrane method, or curing compound method using curing compound (1) or (2) as the Contractor may elect. Should the side forms be removed before the expiration of 72 hours following the start of curing, the exposed pavement edges shall also be cured. If the pavement is cured by means of the curing compound method, the sawcut and all portions of the curing compound that have been disturbed by sawing operations shall be restored by spraying with additional curing compound. - Curing shall commence as soon as the finishing process provided in Section 40-1.10, "Final Finishing," has been completed. The method selected shall conform to the provisions in Section 90-7.01, "Methods of Curing." - When the curing compound method is used, the compound shall be applied to the entire pavement surface by mechanical sprayers. Spraying equipment shall be of the fully atomizing type equipped with a tank agitator that provides for continual agitation of the curing compound during the time of application. The spray shall be adequately protected against wind, and the nozzles shall be so oriented or moved mechanically transversely as to result in the minimum specified rate of coverage being applied uniformly on exposed faces. Hand spraying of small and irregular areas, and areas inaccessible to mechanical spraying equipment, in the opinion of the Engineer, will be permitted. When the ambient air temperature is above 15°C, the Contractor shall fog the surface of the concrete with a fine spray of water as specified in Section 90-7.01A, "Water Method." The surface of the pavement shall be kept moist between the hours of 10:00 a.m. and 4:30 p.m. on the day the concrete is placed. However, the fogging done after the curing compound has been applied shall not begin until the compound has set sufficiently to prevent displacement. Fogging shall be discontinued if ordered in writing by the Engineer. #### 90-7.03 CURING STRUCTURES - Newly placed concrete for cast-in-place structures, other than highway bridge decks, shall be cured by the water method, the forms-in-place method, or, as permitted herein, by the curing compound method, in conformance with the provisions
in Section 90-7.01, "Methods of Curing." - The curing compound method using a pigmented curing compound may be used on concrete surfaces of construction joints, surfaces that are to be buried underground, and surfaces where only Ordinary Surface Finish is to be applied and on which a uniform color is not required and that will not be visible from a public traveled way. If the Contractor elects to use the curing compound method on the bottom slab of box girder spans, the curing compound shall be curing compound (1). - The top surface of highway bridge decks shall be cured by both the curing compound method and the water method. The curing compound shall be curing compound (1). - Concrete surfaces of minor structures, as defined in Section 51-1.02, "Minor Structures," shall be cured by the water method, the forms-in-place method or the curing compound method. - When deemed necessary by the Engineer during periods of hot weather, water shall be applied to concrete surfaces being cured by the curing compound method or by the forms-in-place method, until the Engineer determines that a cooling effect is no longer required. Application of water for this purpose will be paid for as extra work as provided in Section 4-1.03D, "Extra Work." ## 90-7.04 CURING PRECAST CONCRETE MEMBERS - Precast concrete members shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." Curing shall be provided for the minimum time specified for each method or until the concrete reaches its design strength, whichever is less. Steam curing may also be used for precast members and shall conform to the following provisions: - A. After placement of the concrete, members shall be held for a minimum 4-hour presteaming period. If the ambient air temperature is below 10°C, steam shall be applied during the presteaming period to hold the air surrounding the member at a temperature between 10°C and 32°C. - B. To prevent moisture loss on exposed surfaces during the presteaming period, members shall be covered as soon as possible after casting or the exposed surfaces shall be kept wet by fog spray or wet blankets. - C. Enclosures for steam curing shall allow free circulation of steam about the member and shall be constructed to contain the live steam with a minimum moisture loss. The use of tarpaulins or similar flexible covers will be permitted, provided they are kept in good repair and secured in such a manner as to prevent the loss of steam and moisture. - D. Steam at the jets shall be at low pressure and in a saturated condition. Steam jets shall not impinge directly on the concrete, test cylinders, or forms. During application of the steam, the temperature rise within the enclosure shall not exceed 22°C per hour. The curing temperature throughout the enclosure shall not exceed 65°C and shall be maintained at a constant level for a sufficient time necessary to develop the required transfer strength. Control cylinders shall be covered to prevent moisture loss and shall be placed in a location where temperature is representative of the average temperature of the enclosure. - E. Temperature recording devices that will provide an accurate, continuous, permanent record of the curing temperature shall be provided. A minimum of one temperature recording device per 60 m of continuous bed length will be required for checking temperature. - F. Members in pretension beds shall be detensioned immediately after the termination of steam curing while the concrete and forms are still warm, or the temperature under the enclosure shall be maintained above 15°C until the stress is transferred to the concrete. - G. Curing of precast concrete will be considered completed after termination of the steam curing cycle. ## 90-7.05 CURING PRECAST PRESTRESSED CONCRETE PILES - Newly placed concrete for precast prestressed concrete piles shall be cured in conformance with the provisions in Section 90-7.04, "Curing Precast Concrete Members," except that piles with a class designation ending in C (corrosion resistant) shall be cured as follows: - A. Piles shall be either steam cured or water cured. If water curing is used, the piles shall be kept continuously wet by the application of water in conformance with the provisions in Section 90-7.01A, "Water Method." - B. If steam curing is used, the steam curing provisions in Section 90-7.04, "Curing Precast Concrete Members," shall apply except that the piles shall be kept continuously wet for their entire length for a period of not less than 3 days, including the holding and steam curing periods. #### 90-7.06 CURING SLOPE PROTECTION - Concrete slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." - Concreted-rock slope protection shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing," or with a blanket of earth kept wet for 72 hours, or by sprinkling with a fine spray of water every 2 hours during the daytime for a period of 3 days. ## 90-7.07 CURING MISCELLANEOUS CONCRETE WORK - Exposed surfaces of curbs shall be cured by pigmented curing compounds as specified in Section 90-7.01B, "Curing Compound Method." - Concrete sidewalks, gutter depressions, island paving, curb ramps, driveways, and other miscellaneous concrete areas shall be cured in conformance with any of the methods specified in Section 90-7.01, "Methods of Curing." - Shotcrete shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing." - Mortar and grout shall be cured by keeping the surface damp for 3 days. - After placing, the exposed surfaces of sign structure foundations, including pedestal portions, if constructed, shall be cured for at least 72 hours by spraying with water, or by a moist earth blanket, or by any of the methods provided in Section 90-7.01, "Methods of Curing." ## 90-8 PROTECTING CONCRETE #### 90-8.01 **GENERAL** - In addition to the provisions in Section 7-1.16, "Contractor's Responsibility for the Work and Materials," the Contractor shall protect concrete as provided in this Section 90-8. - Concrete shall not be placed on frozen or ice-coated ground or subgrade nor on ice-coated forms, reinforcing steel, structural steel, conduits, precast members, or construction joints. - Under rainy conditions, placing of concrete shall be stopped before the quantity of surface water is sufficient to damage surface mortar or cause a flow or wash of the concrete surface, unless the Contractor provides adequate protection against damage. - Concrete that has been frozen or damaged by other causes, as determined by the Engineer, shall be removed and replaced by the Contractor at the Contractor's expense. ## 90-8.02 PROTECTING CONCRETE STRUCTURES • Structure concrete and shotcrete used as structure concrete shall be maintained at a temperature of not less than 7°C for 72 hours after placing and at not less than 4°C for an additional 4 days. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete. ## 90-8.03 PROTECTING CONCRETE PAVEMENT - Pavement concrete shall be maintained at a temperature of not less than 4°C for 72 hours. When required by the Engineer, the Contractor shall submit a written outline of the proposed methods for protecting the concrete. - Except as provided in Section 7-1.08, "Public Convenience," the Contractor shall protect concrete pavement against construction and other activities that abrade, scar, discolor, reduce texture depth, lower coefficient of friction, or otherwise damage the surface. Stockpiling, drifting, or excessive spillage of soil, gravel, petroleum products, and concrete or asphalt mixes on the surface of concrete pavement is prohibited unless otherwise specified in these specifications, the special provisions or permitted by the Engineer. - When ordered by the Engineer or shown on the plans or specified in the special provisions, pavement crossings shall be constructed for the convenience of public traffic. The material and work necessary for the construction of the crossings, and their subsequent removal and disposal, will be paid for at the contract unit prices for the items of work involved and if there are no contract items for the work involved, payment for pavement crossings will be made by extra work as provided in Section 4-1.03D, "Extra Work.". Where public traffic will be required to cross over the new pavement, Type III portland cement may be used in concrete, if permitted in writing by the Engineer. The pavement may be opened to traffic as soon as the concrete has developed a modulus of rupture of 3.8 MPa. The modulus of rupture will be determined by California Test 523. - No traffic or Contractor's equipment, except as hereinafter provided, will be permitted on the pavement before a period of 10 days has elapsed after the concrete has been placed, nor before the concrete has developed a modulus of rupture of at least 3.8 MPa. Concrete that fails to attain a modulus of rupture of 3.8 MPa within 10 days shall not be opened to traffic until directed by the Engineer. - Equipment for sawing weakened plane joints will be permitted on the pavement as specified in Section 40-1.08B, "Weakened Plane Joints." - When requested in writing by the Contractor, the tracks on one side of paving equipment will be permitted on the pavement after a modulus of rupture of 2.4 MPa has been attained, provided that: - A. Unit pressure exerted on the pavement by the paver shall not exceed 135 kPa; - B. Tracks with cleats, grousers, or similar protuberances shall be modified or shall travel on planks or equivalent protective material, so that the pavement is not damaged; and - C. No part of the track shall be closer than 0.3-m from the edge of pavement. - In case of visible cracking of, or other damage to
the pavement, operation of the paving equipment on the pavement shall be immediately discontinued. - Damage to the pavement resulting from early use of pavement by the Contractor's equipment as provided above shall be repaired by the Contractor at the Contractor's expense. - The State will furnish the molds and machines for testing the concrete for modulus of rupture, and the Contractor, at the Contractor's expense, shall furnish the material and whatever labor the Engineer may require. ## 90-9 COMPRESSIVE STRENGTH ## 90-9.01 **GENERAL** - Concrete compressive strength requirements consist of a minimum strength that shall be attained before various loads or stresses are applied to the concrete and, for concrete designated by strength, a minimum strength at the age of 28 days or at the age otherwise allowed in Section 90-1.01, "Description." The various strengths required are specified in these specifications or the special provisions or are shown on the plans. - The compressive strength of concrete will be determined from test cylinders that have been fabricated from concrete sampled in conformance with the requirements of California Test 539. Test cylinders will be molded and initially field cured in conformance with California Test 540. Test cylinders will be cured and tested after receipt at the testing laboratory in conformance with the requirements of California Test 521. A strength test shall consist of the average strength of 2 cylinders fabricated from material taken from a single load of concrete, except that, if any cylinder should show evidence of improper sampling, molding, or testing, that cylinder shall be discarded and the strength test shall consist of the strength of the remaining cylinder. - When concrete compressive strength is specified as a prerequisite to applying loads or stresses to a concrete structure or member, test cylinders for other than steam cured concrete will be cured in conformance with Method 1 of California Test 540. The compressive strength of concrete determined for these purposes will be evaluated on the basis of individual tests. - When concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete strength to be used as a basis for acceptance of other than steam cured concrete will be determined from cylinders cured in conformance with Method 1 of California Test 540. If the result of a single compressive strength test at the maximum age specified or allowed is below the specified strength but is 95 percent or more of the specified strength, the Contractor shall, at the Contractor's expense, make corrective changes, subject to approval of the Engineer, in the mix proportions or in the concrete fabrication procedures, before placing additional concrete, and shall pay to the State \$14 for each in-place cubic meter of concrete represented by the deficient test. If the result of a single compressive strength test at the maximum age specified or allowed is below 95 percent of the specified strength, but is 85 percent or more of the specified strength, the Contractor shall make the corrective changes specified above, and shall pay to the State \$20 for each in place cubic meter of concrete represented by the deficient test. In addition, such corrective changes shall be made when the compressive strength of concrete tested at 7 days indicates, in the judgment of the Engineer, that the concrete will not attain the required compressive strength at the maximum age specified or allowed. Concrete represented by a single test that indicates a compressive strength of less than 85 percent of the specified 28-day compressive strength will be rejected in conformance with the provisions in Section 6-1.04, "Defective Materials." - If the test result indicates that the compressive strength at the maximum curing age specified or allowed is below the specified strength, but is 85 percent or more of the specified strength, payments to the State as required above shall be made, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength of the concrete placed in the work meets or exceeds the specified 28-day compressive strength. If the test result indicates a compressive strength at the maximum curing age specified or allowed below 85 percent, the concrete represented by that test will be rejected, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength and quality of the concrete placed in the work are acceptable. If the evidence consists of tests made on cores taken from the work, the cores shall be obtained and tested in conformance with the requirements in ASTM Designation: C 42. - No single compressive strength test shall represent more than 250 m³. - When a precast concrete member is steam cured, the compressive strength of the concrete will be determined from test cylinders that have been handled and stored in conformance with Method 3 of California Test 540. The compressive strength of steam cured concrete will be evaluated on the basis of individual tests representing specific portions of production. When the concrete is designated by 28-day compressive strength rather than by cementitious material content, the concrete shall be considered to be acceptable whenever its compressive strength reaches the specified 28-day compressive strength provided that strength is reached in not more than the maximum number of days specified or allowed after the member is cast. - When concrete is specified by compressive strength, prequalification of materials, mix proportions, mixing equipment, and procedures proposed for use will be required prior to placement of the concrete. Prequalification shall be accomplished by the submission of acceptable certified test data or trial batch reports by the Contractor. Prequalification data shall be based on the use of materials, mix proportions, mixing equipment, procedures, and size of batch proposed for use in the work. - Certified test data, in order to be acceptable, shall indicate that not less than 90 percent of at least 20 consecutive tests exceed the specified strength at the maximum number of cure days specified or allowed, and none of those tests are less than 95 percent of specified strength. Strength tests included in the data shall be the most recent tests made on concrete of the proposed mix design and all shall have been made within one year of the proposed use of the concrete. - Trial batch test reports, in order to be acceptable, shall indicate that the average compressive strength of 5 consecutive concrete cylinders, taken from a single batch, at not more than 28 days (or the maximum age allowed) after molding shall be at least 4 MPa greater than the specified 28-day compressive strength, and no individual cylinder shall have a strength less than the specified strength at the maximum age specified or allowed. Data contained in the report shall be from trial batches that were produced within one year of the proposed use of specified strength concrete in the project. Whenever air-entrainment is required, the air content of trial batches shall be equal to or greater than the air content specified for the concrete without reduction due to tolerances. - Tests shall be performed in conformance with either the appropriate California Test methods or the comparable ASTM test methods. Equipment employed in testing shall be in good condition and shall be properly calibrated. If the tests are performed during the life of the contract, the Engineer shall be notified sufficiently in advance of performing the tests in order to witness the test procedures. - The certified test data and trial batch test reports shall include the following information: - A. Date of mixing. - B. Mixing equipment and procedures used. - C. The size of batch in cubic meters and the mass, type, and source of all ingredients used. - D. Penetration of the concrete. - E. The air content of the concrete if an air-entraining admixture is used. - F. The age at time of testing and strength of all concrete cylinders tested. - Certified test data and trial batch test reports shall be signed by an official of the firm that performed the tests. - When approved by the Engineer, concrete from trial batches may be used in the work at locations where concrete of a lower quality is required and the concrete will be paid for as the type or class of concrete required at that location. - After materials, mix proportions, mixing equipment, and procedures for concrete have been prequalified for use, additional prequalification by testing of trial batches will be required prior to making changes that, in the judgment of the Engineer, could result in a strength of concrete below that specified. - The Contractor's attention is directed to the time required to test trial batches and the Contractor shall be responsible for production of trial batches at a sufficiently early date so that the progress of the work is not delayed. - When precast concrete members are manufactured at the plant of an established manufacturer of precast concrete members, the mix proportions of the concrete shall be determined by the Contractor, and a trial batch and prequalification of the materials, mix proportions, mixing equipment, and procedures will not be required. #### 90-10 MINOR CONCRETE ## 90-10.01 **GENERAL** - Concrete for minor structures, slope paving, curbs, sidewalks and other concrete work, when designated as minor concrete on the plans, in the specifications, or in the contract item, shall conform to the provisions specified herein. - The Engineer, at the Engineer's discretion, will inspect and test the facilities, materials and methods for producing the concrete to ensure that minor concrete of the quality suitable for use in the work is obtained. #### **90-10.02 MATERIALS** Minor concrete shall conform to the following
requirements: #### 90-10.02A Cementitious Material Cementitious material shall conform to the provisions in Section 90-1.01, "Description." # 90-10.02B Aggregate - Aggregate shall be clean and free from deleterious coatings, clay balls, roots, and other extraneous materials. - The Contractor shall submit to the Engineer for approval, a grading of the combined aggregate proposed for use in the minor concrete. After acceptance of the grading, aggregate furnished for minor concrete shall conform to that grading, unless a change is authorized in writing by the Engineer. - The Engineer may require the Contractor to furnish periodic test reports of the aggregate grading furnished. The maximum size of aggregate used shall be at the option of the Contractor, but in no case shall the maximum size be larger than 37.5 mm or smaller than 19 mm. - The Engineer may waive, in writing, the gradation requirements in this Section 90-10.02B, if, in the Engineer's opinion, the furnishing of the gradation is not necessary for the type or amount of concrete work to be constructed. #### 90-10.02C Water • Water used for washing, mixing, and curing shall be free from oil, salts, and other impurities that would discolor or etch the surface or have an adverse affect on the quality of the concrete. ## 90-10.02D Admixtures • The use of admixtures shall conform to the provisions in Section 90-4, "Admixtures." #### 90-10.03 PRODUCTION • Cementitious material, water, aggregate, and admixtures shall be stored, proportioned, mixed, transported, and discharged in conformance with recognized standards of good practice that will result in concrete that is thoroughly and uniformly mixed, that is suitable for the use intended, and that conforms to requirements specified herein. Recognized standards of good practice are outlined in various industry publications such as are issued by American Concrete Institute, AASHTO, or the Department. - The cementitious material content of minor concrete shall conform to the provisions in Section 90-1.01, "Description." - The amount of water used shall result in a consistency of concrete conforming to the provisions in Section 90-6.06, "Amount of Water and Penetration." Additional mixing water shall not be incorporated into the concrete during hauling or after arrival at the delivery point, unless authorized by the Engineer. - Discharge of ready-mixed concrete from the transporting vehicle shall be made while the concrete is still plastic and before stiffening occurs. An elapsed time of 1.5 hours (one hour in non-agitating hauling equipment), or more than 250 revolutions of the drum or blades, after the introduction of the cementitious material to the aggregates, or a temperature of concrete of more than 32°C will be considered conditions contributing to the quick stiffening of concrete. The Contractor shall take whatever action is necessary to eliminate quick stiffening, except that the addition of water will not be permitted. - The required mixing time in stationary mixers shall be not less than 50 seconds or more than 5 minutes. - The minimum required revolutions at mixing speed for transit-mixed concrete shall be not less than that recommended by the mixer manufacturer, and shall be increased, if necessary, to produce thoroughly and uniformly mixed concrete. - Each load of ready-mixed concrete shall be accompanied by a weighmaster certificate that shall be delivered to the Engineer at the discharge location of the concrete, unless otherwise directed by the Engineer. The weighmaster certificate shall be clearly marked with the date and time of day when the load left the batching plant and, if hauled in truck mixers or agitators, the time the mixing cycle started. - A Certificate of Compliance conforming to the provisions in Section 6–1.07, "Certificates of Compliance," shall be furnished to the Engineer, prior to placing minor concrete from a source not previously used on the contract, stating that minor concrete to be furnished meets contract requirements, including minimum cementitious material content specified. ## 90-10.04 CURING MINOR CONCRETE • Curing minor concrete shall conform to the provisions in Section 90-7, "Curing Concrete." ## 90-10.05 PROTECTING MINOR CONCRETE • Protecting minor concrete shall conform to the provisions in Section 90-8, "Protecting Concrete," except the concrete shall be maintained at a temperature of not less than 4°C for 72 hours after placing. ## 90-10.06 MEASUREMENT AND PAYMENT • Minor concrete will be measured and paid for in conformance with the provisions specified in the various sections of these specifications covering concrete construction when minor concrete is specified in the specifications, shown on the plans, or indicated by contract item in the Engineer's Estimate. #### 90-11 MEASUREMENT AND PAYMENT #### 90-11.01 MEASUREMENT - Portland cement concrete will be measured in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete. - When it is provided that concrete will be measured at the mixer, the volume in cubic meters shall be computed as the total mass of the batch in kilograms divided by the density of the concrete in kilograms per cubic meter. The total mass of the batch shall be calculated as the sum of all materials, including water, entering the batch. The density of the concrete will be determined in conformance with the requirements in California Test 518. ## 90-11.02 PAYMENT - Portland cement concrete will be paid for in conformance with the provisions specified in the various sections of these specifications covering construction requiring concrete. - Full compensation for furnishing and incorporating admixtures required by these specifications or the special provisions will be considered as included in the contract prices paid for the concrete involved and no additional compensation will be allowed therefor. - Should the Engineer order the Contractor to incorporate any admixtures in the concrete when their use is not required by these specifications or the special provisions, furnishing the admixtures and adding them to the concrete will be paid for as extra work as provided in Section 4-1.03D, "Extra Work." • Should the Contractor use admixtures in conformance with the provisions in Section 90-4.05, "Optional Use of Chemical Admixtures," or Section 90-4.07, "Optional Use of Air-entraining Admixtures," or should the Contractor request and obtain permission to use other admixtures for the Contractor's benefit, the Contractor shall furnish those admixtures and incorporate them into the concrete at the Contractor's expense and no additional compensation will be allowed therefor. # **END OF AMENDMENTS** ## SECTION 2. PROPOSAL REQUIREMENTS AND CONDITIONS #### **2-1.01 GENERAL** The bidder's attention is directed to the provisions in Section 2, "Proposal Requirements and Conditions," of the Standard Specifications and these special provisions for the requirements and conditions which the bidder must observe in the preparation of the Proposal form and the submission of the bid. In addition to the subcontractors required to be listed in conformance with Section 2-1.054, "Required Listing of Proposed Subcontractors," of the Standard Specifications, each proposal shall have listed therein the name and address of each DVBE subcontractor and supplier to be used for credit in meeting the goal. The list of subcontractors shall also set forth the portion of work that will be performed by each subcontractor listed. A sheet for listing the subcontractors is included in the Proposal. The Bidder's Bond form mentioned in the last paragraph in Section 2-1.07, "Proposal Guaranty," of the Standard Specifications will be found following the signature page of the Proposal. If the Bidder submits cash or a cashier's check or a certified check as the form of bidder's security (See Section 2-1.07 of the Standard Specifications), the Bidder shall also include with the bid submittal a signed and notarized affidavit from an admitted surety insurer that contract bonds, as required by Section 3-1.02, "Contract Bonds," of the Standard Specifications, will be provided within the time specified elsewhere in these special provisions for executing and returning the contract for approval. Submit request for substitution of an "or equal" item, and the data substantiating the request to the Department of Transportation, Central Region Construction, P.O. Box 12616, Fresno, CA 93778, so that the request is received by the Department by close of business on the fourth day, not including Saturdays, Sundays and legal holidays, following bid opening. In conformance with Public Contract Code Section 7106, a Noncollusion Affidavit is included in the Proposal. Signing the Proposal shall also constitute signature of the Noncollusion Affidavit. If the bidder claims a mistake was made in his bid, the bidder shall give the Department written notice within 48-hours, not including Saturdays, Sundays and legal holidays, after the opening of bids of the alleged mistake, in lieu of the 5 days specified in Section 2-1.095, "Relief of Bidders," in the Standard Specifications. The notice of alleged mistake shall specify in detail how the mistake occurred. ## 2-1.02 DISABLED VETERAN BUSINESS ENTERPRISE (DVBE) Section 10115 of the Public Contract Code requires the Department to implement provisions to establish a goal for Disabled Veterans Business Enterprise (DVBE) in contracts. It is the policy of the Department that Disabled Veteran Business Enterprise (DVBE) shall have the maximum opportunity to participate in the performance of contracts financed solely with state funds. The Contractor shall ensure that DVBEs have the maximum opportunity to participate in the performance of this contract and shall take all necessary and reasonable steps for this assurance. The Contractor shall not discriminate on the basis of race, color, national
origin, or sex in the award and performance of subcontracts. Failure to carry out the requirements of this paragraph shall constitute a breach of contract and may result in termination of this contract or other remedy the Department may deem appropriate. Bidder's attention is directed to the following: - A. "Disabled Veteran Business Enterprise" (DVBE) means a business concern certified as a DVBE by the Office of Small Business Certification and Resources, Department of General Services. - B. A DVBE may participate as a prime contractor, subcontractor, joint venture partner with a prime or subcontractor, or vendor of material or supplies. - C. Credit for DVBE prime contractors will be 100 percent. - D. A DVBE joint venture partner must be responsible for specific contract items of work, or portions thereof. Responsibility means actually performing, managing and supervising the work with its own forces. The DVBE joint venture partner must share in the ownership, control, management responsibilities, risks and profits of the joint venture. The DVBE joint venturer must submit the joint venture agreement with the Caltrans Bidder DVBE - Information form required in Section 2-1.04, "Submission of DVBE Information," elsewhere in these special provisions. - E. A DVBE must perform a commercially useful function, i.e., must be responsible for the execution of a distinct element of the work and must carry out its responsibility by actually performing, managing and supervising the work - F. Credit for DVBE vendors of materials or supplies is limited to 60 percent of the amount to be paid to the vendor for the material unless the vendor manufactures or substantially alters the goods. - G. Credit for trucking by DVBEs will be as follows: - 1. One hundred percent of the amount to be paid when a DVBE trucker will perform the trucking with his/her own trucks, tractors and employees. - 2. Twenty percent of the amount to be paid to DVBE trucking brokers who do not have a "certified roster." - 3. One hundred percent of the amount to be paid to DVBE trucking brokers who have signed agreements that all trucking will be performed by DVBE truckers if credit is toward the DVBE goal, a "certified roster" showing that all trucks are owned by DVBEs, and a signed statement on the "certified roster" that indicates that 100 percent of revenue paid by the broker will be paid to the DVBEs listed on the "certified roster." - 4. Twenty percent of the amount to be paid to trucking brokers who are not a DVBE but who have signed agreements with DVBE truckers assuring that at least 20 percent of the trucking will be performed by DVBE truckers if credit is toward the DVBE goal, a "certified roster" showing that at least 20 percent of the number of trucks are owned by DVBE truckers, and a signed statement on the "certified roster" that indicates that at least 20 percent of the revenue paid by the broker will be paid to the DVBEs listed on the "certified roster." The "certified roster" referred to herein shall conform to the requirements in Section 2-1.04, "Submission Of DVBE Information," elsewhere in these special provisions. - H. DVBEs and DVBE joint venture partners must be certified DVBEs as determined by the Department of General Services, Office of Small Business Certification and Resources, 1531 "I" Street, Second Floor, Sacramento, CA 95814, on the date bids for the project are opened before credit may be allowed toward the DVBE goal. It is the Contractor's responsibility to verify that DVBEs are certified. - I. Noncompliance by the Contractor with these requirements constitutes a breach of this contract and may result in termination of the contract or other appropriate remedy for a breach of this contract. ## 2-1.03 DVBE GOAL FOR THIS PROJECT The Department has established the following goal for Disabled Veteran Business Enterprise (DVBE) participation for this project: Disabled Veteran Business Enterprise (DVBE): 3 percent. It is the bidder's responsibility to make a sufficient portion of the work available to subcontractors and suppliers and to select those portions of the work or material needs consistent with the available DVBE subcontractors and suppliers, so as to assure meeting the goal for DVBE participation. The Office of Small Business Certification and Resources, Department of General Services, may be contacted at (916) 322-5060 or visit their internet web site at http://www.osmb.dgs.ca.gov/ for program information and certification status. The Department's Business Enterprise Program may also be contacted at (916) 227-9599 or the internet web site at http://www.dot.ca.gov/hq/bep/. ## 2-1.04 SUBMISSION OF DVBE INFORMATION The required DVBE information shall be submitted WITH THE BID on the following "CALTRANS BIDDER - DVBE - INFORMATION" and "TELEPHONE LOG AND LIST OF REJECTED DVBEs." It is the bidder's responsibility to meet the goal for DVBE participation or to establish that, prior to bidding, the bidder made good faith efforts to do so based on the information in the "CALTRANS BIDDER - DVBE - INFORMATION" and "TELEPHONE LOG AND LIST OF REJECTED DVBEs." The information to show that the DVBE goal will be met on the "CALTRANS BIDDER - DVBE - INFORMATION" form shall include the names of DVBEs and DVBE joint venture partners to be used, with a complete description of work or supplies to be provided by each and the dollar value of each such DVBE transaction. When 100 percent of a contract item of work is not to be performed or furnished by a DVBE, a description of the exact portion of said work to be performed or furnished by that DVBE shall be included in the DVBE information, including the planned location of said work. DVBE prime contractors shall enter their Office of Small Business Certification and Resources (OSBCR) - DVBE reference number and/or DBA name, as listed with OSBCR, on the line provided. (Note: DVBE subcontractors to whom the bidder proposes to directly subcontract portions of the work are to be named in the bid. - See Section 2-1.054, "Required Listing of Proposed Subcontractors," of the Standard Specifications and Section 2-1.01, "General," of these special provisions, regarding listing of proposed subcontractors.) Information necessary to establish the bidder's good faith efforts to meet the DVBE goals shall be included in the "TELEPHONE LOG AND LIST OF REJECTED DVBEs" form located in the Proposal and shall include: - A. The names, dates and times of notices of all certified DVBEs solicited by telephone for this project and the dates, times and methods used for following up initial solicitations to determine with certainty whether the DVBEs were interested. - B. The names of DVBEs who submitted bids which were not accepted and the reason for rejection of the DVBE's bid. Bidders are cautioned that even though their submittal indicates they will meet the stated DVBE goal, their submittal should also include the telephone log and rejected DVBE information to protect their eligibility for award of the contract in the event the Department, in its review, finds that the goal has not been met. It is the bidder's responsibility to be available, by phone, the day after the bid opening to answer questions and provide good faith effort clarification. The bidder shall also assure that listed DVBEs are available, by phone, on the day after the bid opening. If it is found that the goal has not been met, the Department will review the information submitted with the bid to determine the bidder's good faith effort. In the event that the Department determines that a bidder has not made a good faith effort based on the information submitted with the bid and its independent investigation, the Department's decision will be final. ## 2-1.05 SMALL BUSINESS PREFERENCE Attention is directed to "Award and Execution of Contract" of these special provisions. Attention is also directed to the Small Business Procurement and Contract Act, Government Code Section 14835, et seq and Title 2, California Code of Regulations, Section 1896, et seq. Bidders who wish to be classified as a Small Business under the provisions of those laws and regulations, shall be certified as Small Business by the Department of General Services, Office of Small Business Certification and Resources, 1531 "I" Street, Second Floor, Sacramento, CA 95814. To request Small Business Preference, bidders shall fill out and sign the Request for Small Business Preference form in the Proposal and shall attach a copy of their Office of Small Business Certification and Resources (OSBCR) small business certification letter to the form. The bidder's signature on the Request for Small Business Preference certifies, under penalty of perjury, that the bidder is certified as Small Business at the time of bid opening and further certifies, under penalty of perjury, that under the following conditions, at least 50 percent of the subcontractors to be utilized on the project are either certified Small Business or have applied for Small Business certification by bid opening date and are subsequently granted Small Business certification. The conditions requiring the aforementioned 50 percent level of subcontracting by Small Business subcontractors apply if: - A. The lowest responsible bid for the project exceeds \$100,000; and - B. The project work to be performed requires a Class A or a Class B contractor's license; and - C. Two or more subcontractors will be used. If the above conditions apply and Small Business Preference is granted in the award of the contract, the 50 percent Small Business subcontractor utilization level shall be maintained throughout the life of the contract. #### 2-1.06 CALIFORNIA COMPANY PREFERENCE Attention is directed to "Award and Execution of Contract" of these special provisions. In conformance with the requirements of Section 6107 of the Public Contract Code, a "California company" will be granted a reciprocal preference for bid comparison purposes as against a
nonresident contractor from any state that gives or requires a preference to be given contractors from that state on its public entity construction contracts. A "California Company" means a sole proprietorship, partnership, joint venture, corporation, or other business entity that was a licensed California contractor on the date when bids for the public contract were opened and meets one of the following: - A. Has its principal place of business in California. - B. Has its principal place of business in a state in which there is no local contractor preference on construction contracts. C. Has its principal place of business in a state in which there is a local contractor construction preference and the contractor has paid not less than \$5000 in sales or use taxes to California for construction related activity for each of the five years immediately preceding the submission of the bid. To carry out the "California Company" reciprocal preference requirements of Section 6107 of the Public Contract Code, all bidders shall fill out and sign the California Company Preference form in the Proposal. The bidder's signature on the California Company Preference form certifies, under penalty of perjury, that the bidder is or is not a "California company" and if not, the amount of the preference applied by the state of the nonresident Contractor. A nonresident Contractor shall disclose any and all bid preferences provided to the nonresident Contractor by the state or country in which the nonresident Contractor has its principal place of business. Proposals without the California Company Preference form filled out and signed may be rejected. #### SECTION 3. AWARD AND EXECUTION OF CONTRACT The bidder's attention is directed to the provisions in Section 3, "Award and Execution of Contract," of the Standard Specifications, and these special provisions for the requirements and conditions concerning award and execution of contract. It is anticipated that this contract will be awarded within seven days after bid opening. The award of the contract, if made, will be to the lowest responsible bidder whose proposal complies with all the requirements prescribed and who has met the goal for DVBE participation or has demonstrated, to the satisfaction of the Department, adequate good faith efforts to do so. Meeting the goal for DVBE participation or demonstrating, to the satisfaction of the Department, adequate good faith efforts to do so is a condition for being eligible for award of contract. The contract shall be signed by the successful bidder and shall be received with contract bonds by the Division of Office Engineer within 4 days, not including Saturdays, Sundays and legal holidays, after the bidder has received notice that the contract has been awarded. Failure to do so shall be just cause for forfeiture of the proposal guaranty. The executed contract documents shall be delivered to the following address: Department of Transportation, P.O. Box 942874, Sacramento, CA 94274-0001, Attn: Office Engineer (MS 43) - Contracts. A "Payee Data Record" form will be included in the contract documents to be executed by the successful bidder. The purpose of the form is to facilitate the collection of taxpayer identification data. The form shall be completed and returned to the Department by the successful bidder with the executed contract and contract bonds. For the purposes of the form, vendor shall be deemed to mean the successful bidder. The form is not to be completed for subcontractors or suppliers. Failure to complete and return the "Payee Data Record" form to the Department as provided herein will result in the retention of 20 percent of payments due the contractor and penalties of up to \$20 000. This retention of payments for failure to complete the "Payee Data Record" form is in addition to any other retention of payments due the Contractor. Attention is also directed to "Small Business Preference" of these special provisions. Any bidder who is certified as a Small Business by the Department of General Services, Office of Small Business Certification and Resources will be allowed a preference in the award of this contract, if it be awarded, under the following conditions: - A. The apparent low bidder is not certified as a Small Business, or has not filled out and signed the Request for Small Business Preference included with the bid documents and attached a copy of their Office of Small Business Certification and Resources (OSBCR) small business certification letter to the form; and - B. The bidder filled out and signed the Request for Small Business Preference form included with the bid documents and attached a copy of their Office of Small Business Certification and Resources (OSBCR) small business certification letter to the form. The small business preference will be a reduction in the bid submitted by the small business contractor, for bid comparison purposes, by an amount equal to 5 percent of the amount bid by the apparent low bidder, the amount not to exceed \$50,000. If this reduction results in the small business contractor becoming the low bidder, then the contract will be awarded to the small business contractor on the basis of the actual bid of the small business contractor notwithstanding the reduced bid price used for bid comparison purposes. Attention is also directed to "California Company Preference" of these special provisions. The amount of the California company reciprocal preference shall be equal to the amount of the preference applied by the state of the nonresident contractor with the lowest responsive bid, except where the "California company" is eligible for a California Small Business Preference, in which case the preference applied shall be the greater of the two, but not both. If the bidder submitting the lowest responsive bid is not a "California company" and with the benefit of the reciprocal preference, a "California company's" responsive bid is equal to or less than the original lowest responsive bid, the "California company" will be awarded the contract at its submitted bid price except as provided below. Small business bidders shall have precedence over nonsmall business bidders in that the application of the "California company" preference for which nonsmall business bidders may be eligible shall not result in the denial of the award to a small business bidder. ## SECTION 4. BEGINNING OF WORK, TIME OF COMPLETION AND LIQUIDATED DAMAGES Attention is directed to the provisions in Section 8-1.03, "Beginning of Work," Section 8-1.06, "Time of Completion," and Section 8-1.07, "Liquidated Damages," of the Standard Specifications and these special provisions. This work shall be diligently prosecuted to completion before the expiration of 70 WORKING DAYS beginning at 12:01 a.m. on the FIRST WORKING DAY AFTER CONTRACT AWARD. The Contractor shall pay to the State of California the sum of \$1300 per day, for each and every calendar day's delay in finishing the work in excess of the number of working days prescribed above. The 72 hours advance notice before beginning work as referred to in Section 8-1.03, "Beginning of Work," of the Standard Specifications is changed to 24 hours advance notice for this project. Subparagraph (a) of the second paragraph in Section 8-1.06, "Time of Completion," of the Standard specifications shall not apply to this project. #### **SECTION 5. GENERAL** #### **SECTION 5-1. MISCELLANEOUS** #### 5-1.01 PLANS AND WORKING DRAWINGS When the specifications require working drawings to be submitted to the Division of Structure Design, the drawings shall be submitted to: Division of Structure Design, Documents Unit, Mail Station 9, 1801 30th Street, Sacramento, CA 95816, Telephone (916) 227-8252. ## 5-1.011 EXAMINATION OF PLANS, SPECIFICATIONS, CONTRACT, AND SITE OF WORK Attention is directed to "Differing Site Conditions" of these special provisions regarding physical conditions at the site which may differ from those indicated in "Materials Information," log of test borings or other geotechnical information obtained by the Department's investigation of site conditions. ## 5-1.012 DIFFERING SITE CONDITIONS Attention is directed to Section 5-1.116, "Differing Site Conditions," of the Standard Specifications. During the progress of the work, if subsurface or latent conditions are encountered at the site differing materially from those indicated in the "Materials Information," log of test borings, other geotechnical data obtained by the Department's investigation of subsurface conditions, or an examination of the conditions above ground at the site, the party discovering those conditions shall promptly notify the other party in writing of the specific differing conditions before they are disturbed and before the affected work is performed. The Contractor will be allowed 15 days from the notification of the Engineer's determination of whether or not an adjustment of the contract is warranted, in which to file a notice of potential claim in conformance with the provisions of Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications and as specified herein; otherwise the decision of the Engineer shall be deemed to have been accepted by the Contractor as correct. The notice of potential claim shall set forth in what respects the Contractor's position differs from the Engineer's determination and provide any additional information obtained by the Contractor, including but not limited to additional geotechnical data. The notice of potential claim shall be accompanied by the Contractor's certification that the following were made in preparation of the bid: a review of the contract, a review of the "Materials Information," a review of the log of test borings and other records of geotechnical data to the extent they were made available to bidders prior to the opening of bids, and an examination of the conditions above ground at the site. Supplementary information, obtained by the
Contractor subsequent to the filing of the notice of potential claim, shall be submitted to the Engineer in an expeditious manner. #### 5-1.013 LINES AND GRADES Attention is directed to Section 5-1.07, "Lines and Grades," of the Standard Specifications. Stakes or marks will be set by the Engineer in conformance with the requirements in Chapter 12, "Construction Surveys," of the Department's Surveys Manual. ## 5-1.015 LABORATORY When a reference is made in the specifications to the "Laboratory," the reference shall mean Division of Engineering Services - Materials Engineering and Testing Services and Division of Engineering Services - Geotechnical Services of the Department of Transportation, or established laboratories of the various Districts of the Department, or other laboratories authorized by the Department to test materials and work involved in the contract. When a reference is made in the specifications to the "Transportation Laboratory," the reference shall mean Division of Engineering Services - Materials Engineering and Testing Services and Division of Engineering Services - Geotechnical Services, located at 5900 Folsom Boulevard, Sacramento, CA 95819, Telephone (916) 227-7000. #### 5-1.017 CONTRACT BONDS Attention is directed to Section 3-1.02, "Contract Bonds," of the Standard Specifications and these special provisions. The payment bond shall be in a sum not less than one hundred percent of the total amount payable by the terms of the contract. ## 5-1.019 COST REDUCTION INCENTIVE Attention is directed to Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications. Prior to preparing a written cost reduction proposal, the Contractor shall request a meeting with the Engineer to discuss the proposal in concept. Items of discussion will also include permit issues, impact on other projects, impact on the project schedule, peer reviews, overall merit of the proposal, and review times required by the Department and other agencies. If a cost reduction proposal submitted by the Contractor, and subsequently approved by the Engineer, provides for a reduction in contract time, 50 percent of that contract time reduction shall be credited to the State by reducing the contract working days, not including plant establishment. Attention is directed to "Beginning of Work, Time of Completion and Liquidated Damages" of these special provisions regarding the working days. If a cost reduction proposal submitted by the Contractor, and subsequently approved by the Engineer, provides for a reduction in traffic congestion or avoids traffic congestion during construction, 60 percent of the estimated net savings in construction costs attributable to the cost reduction proposal will be paid to the Contractor. In addition to the requirements in Section 5-1.14, "Cost Reduction Incentive," of the Standard Specifications, the Contractor shall provide detailed comparisons of the traffic handling between the existing contract and the proposed change, and estimates of the traffic volumes and congestion. #### 5-1.02 LABOR NONDISCRIMINATION Attention is directed to the following Notice that is required by Chapter 5 of Division 4 of Title 2, California Code of Regulations. ## NOTICE OF REQUIREMENT FOR NONDISCRIMINATION PROGRAM # (GOV. CODE, SECTION 12990) Your attention is called to the "Nondiscrimination Clause", set forth in Section 7-1.01A(4), "Labor Nondiscrimination," of the Standard Specifications, which is applicable to all nonexempt State contracts and subcontracts, and to the "Standard California Nondiscrimination Construction Contract Specifications" set forth therein. The specifications are applicable to all nonexempt State construction contracts and subcontracts of \$5000 or more. ## 5-1.022 PAYMENT OF WITHHELD FUNDS Payment of withheld funds shall conform to Section 9-1.065, "Payment of Withheld Funds," of the Standard Specifications and these special provisions. Funds withheld from progress payments to ensure performance of the contract that are eligible for payment into escrow or to an escrow agent pursuant to Section 10263 of the California Public Contract Code do not include funds withheld or deducted from payment due to failure of the Contractor to fulfill a contract requirement. ## 5-1.03 INTEREST ON PAYMENTS Interest shall be payable on progress payments, payments after acceptance, final payments, extra work payments, and claim payments as follows: - A. Unpaid progress payments, payment after acceptance, and final payments shall begin to accrue interest 30 days after the Engineer prepares the payment estimate. - B. Unpaid extra work bills shall begin to accrue interest 30 days after preparation of the first pay estimate following receipt of a properly submitted and undisputed extra work bill. To be properly submitted, the bill must be submitted within 7 days of the performance of the extra work and in conformance with the provisions in Section 9-1.03C, "Records," and Section 9-1.06, "Partial Payments," of the Standard Specifications. An undisputed extra work bill not submitted within 7 days of performance of the extra work will begin to accrue interest 30 days after the preparation of the second pay estimate following submittal of the bill. - C. The rate of interest payable for unpaid progress payments, payments after acceptance, final payments, and extra work payments shall be 10 percent per annum. - D. The rate of interest payable on a claim, protest or dispute ultimately allowed under this contract shall be 6 percent per annum. Interest shall begin to accrue 61 days after the Contractor submits to the Engineer information in sufficient detail to enable the Engineer to ascertain the basis and amount of said claim, protest or dispute. The rate of interest payable on any award in arbitration shall be 6 percent per annum if allowed under the provisions of Civil Code Section 3289. #### 5-1.031 FINAL PAYMENT AND CLAIMS Attention is directed to Section 9-1.07B, "Final Payment and Claims," of the Standard Specifications. If the Contractor files a timely written statement of claims in response to the proposed final estimate, the District that administers the contract will submit a claim position letter to the Contractor by hand delivery or deposit in the U.S. mail within 135 days of acceptance of the contract. The claim position letter will delineate the District's position on the Contractor's claims. If the Contractor disagrees with the claim position letter, the Contractor shall submit a written notification of its disagreement to be received by the District not later than 15 days after the Contractor's receipt of the claim position letter. The written notification of disagreement shall set forth the basis for the Contractor's disagreement and be submitted to the office designated in the claim position letter. The Contractor's failure to provide a timely, written notification of disagreement shall constitute the Contractor's acceptance and agreement with the determinations provided in the claim position letter and with final payment pursuant to the claim position letter. If the Contractor files a timely notification of disagreement with the District claim position letter, the board of review designated by the District Director to review claims that remain in dispute will meet with the Contractor within 45 days after receipt by the District of the notification of disagreement. Attendance by the Contractor at the board of review meeting shall be mandatory. If the District fails to submit a claim position letter to the Contractor within 135 days after the acceptance of the contract and the Contractor has claims that remain in dispute, the Contractor may request a meeting with the board of review designated by the District Director to review claims that remain in dispute. The Contractor's request for a meeting shall identify the claims that remain in dispute. If the Contractor files a request for a meeting, the board of review will meet with the Contractor within 45 days after the District receives the request for the meeting. Attendance by the Contractor at the District Director's board of review meeting shall be mandatory. Failure of the Contractor to file a timely written statement of claims in response to the proposed final estimate, or to file a timely notification of disagreement with the District claim position letter, or to attend the District Director's board of review meeting shall constitute a failure to pursue diligently and exhaust the administrative procedures in the contract and shall be a bar to arbitration in conformance with the requirements in Section 10240.2 of the California Public Contract Code. #### 5-1.04 PUBLIC SAFETY The Contractor shall provide for the safety of traffic and the public in conformance with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications and these special provisions. The Contractor shall install temporary railing (Type K) between a lane open to public traffic and an excavation, obstacle or storage area when the following conditions exist: - A. Excavations.—The near edge of the excavation is 3.6 m or less from the edge of the lane, except: - 1. Excavations covered with sheet steel or concrete covers of adequate thickness to prevent accidental entry by traffic or the public. - 2. Excavations less than 0.3-m deep. - 3. Trenches less than 0.3-m wide for irrigation pipe or electrical conduit, or excavations less than 0.3-m in diameter. - 4. Excavations parallel to the lane for the purpose of pavement widening or reconstruction. - 5. Excavations in side slopes, where the slope is steeper than 1:4 (vertical:horizontal). - 6. Excavations protected by existing barrier or railing. - B. Temporarily Unprotected Permanent Obstacles.—The work includes the installation of a fixed obstacle together with a protective system, such as a sign structure together with protective railing, and the Contractor elects to install the obstacle prior to
installing the protective system; or the Contractor, for the Contractor's convenience and with permission of the Engineer, removes a portion of an existing protective railing at an obstacle and does not replace such railing complete in place during the same day. C. Storage Areas.—Material or equipment is stored within 3.6 m of the lane and the storage is not otherwise prohibited by the provisions of the Standard Specifications and these special provisions. The approach end of temporary railing (Type K), installed in conformance with the provisions in this section "Public Safety" and in Section 7-1.09, "Public Safety," of the Standard Specifications, shall be offset a minimum of 4.6 m from the edge of the traffic lane open to public traffic. The temporary railing shall be installed on a skew toward the edge of the traffic lane of not more than 0.3-m transversely to 3 m longitudinally with respect to the edge of the traffic lane. If the 4.6-m minimum offset cannot be achieved, the temporary railing shall be installed on the 10 to 1 skew to obtain the maximum available offset between the approach end of the railing and the edge of the traffic lane, and an array of temporary crash cushion modules shall be installed at the approach end of the temporary railing. Temporary railing (Type K) shall conform to the provisions in Section 12-3.08, "Temporary Railing (Type K)," of the Standard Specifications. Temporary railing (Type K), conforming to the details shown on 1999 Standard Plan T3, may be used. Temporary railing (Type K) fabricated prior to January 1, 1993, and conforming to 1988 Standard Plan B11-30 may be used, provided the fabrication date is printed on the required Certificate of Compliance. Temporary crash cushion modules shall conform to the provisions in "Temporary Crash Cushion Module" of these special provisions. Except for installing, maintaining and removing traffic control devices, whenever work is performed or equipment is operated in the following work areas, the Contractor shall close the adjacent traffic lane unless otherwise provided in the Standard Specifications and these special provisions: | Approach Speed of Public Traffic (Posted Limit) | Work Areas | | |---|--|--| | (Kilometers Per Hour) | | | | Over 72 (45 Miles Per Hour) | Within 1.8 m of a traffic lane but not on a traffic lane | | | 56 to 72 (35 to 45 Miles Per Hour) | Within 0.9-m of a traffic lane but not on a traffic lane | | The lane closure provisions of this section shall not apply if the work area is protected by permanent or temporary railing or barrier. When traffic cones or delineators are used to delineate a temporary edge of a traffic lane, the line of cones or delineators shall be considered to be the edge of the traffic lane, however, the Contractor shall not reduce the width of an existing lane to less than 3 m without written approval from the Engineer. When work is not in progress on a trench or other excavation that required closure of an adjacent lane, the traffic cones or portable delineators used for the lane closure shall be placed off of and adjacent to the edge of the traveled way. The spacing of the cones or delineators shall be not more than the spacing used for the lane closure. Suspended loads or equipment shall not be moved nor positioned over public traffic or pedestrians. Full compensation for conforming to the provisions in this section "Public Safety," including furnishing and installing temporary railing (Type K) and temporary crash cushion modules, shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor. #### **5-1.05 TESTING** Testing of materials and work shall conform to the provisions in Section 6-3, "Testing," of the Standard Specifications and these special provisions. Whenever the provisions of Section 6-3.01, "General," of the Standard Specifications refer to tests or testing, it shall mean tests to assure the quality and to determine the acceptability of the materials and work. The Engineer will deduct the costs for testing of materials and work found to be unacceptable, as determined by the tests performed by the Department, and the costs for testing of material sources identified by the Contractor which are not used for the work, from moneys due or to become due to the Contractor. The amount deducted will be determined by the Engineer. #### 5-1.06 REMOVAL OF ASBESTOS AND HAZARDOUS SUBSTANCES When the presence of asbestos or hazardous substances are not shown on the plans or indicated in the specifications and the Contractor encounters materials which the Contractor reasonably believes to be asbestos or a hazardous substance as defined in Section 25914.1 of the Health and Safety Code, and the asbestos or hazardous substance has not been rendered harmless, the Contractor may continue work in unaffected areas reasonably believed to be safe. The Contractor shall immediately cease work in the affected area and report the condition to the Engineer in writing. In conformance with Section 25914.1 of the Health and Safety Code, removal of asbestos or hazardous substances including exploratory work to identify and determine the extent of the asbestos or hazardous substance will be performed by separate contract. If delay of work in the area delays the current controlling operation, the delay will be considered a right of way delay and the Contractor will be compensated for the delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. #### 5-1.07 YEAR 2000 COMPLIANCE This contract is subject to Year 2000 Compliance for automated devices in the State of California. Year 2000 compliance for automated devices in the State of California is achieved when embedded functions have or create no logical or mathematical inconsistencies when dealing with dates prior to and beyond 1999. The year 2000 is recognized and processed as a leap year. The product shall operate accurately in the manner in which the product was intended for date operation without requiring manual intervention. The Contractor shall provide the Engineer a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for all automated devices furnished for the project. #### 5-1.08 SUBCONTRACTOR AND DVBE RECORDS The Contractor shall maintain records of all subcontracts entered into with certified DVBE subcontractors and records of materials purchased from certified DVBE suppliers. The records shall show the name and business address of each DVBE subcontractor or vendor and the total dollar amount actually paid each DVBE subcontractor or vendor. Upon completion of the contract, a summary of these records shall be prepared on Form CEM-2402 (S) and certified correct by the Contractor or the Contractor's authorized representative, and shall be furnished to the Engineer. ## 5-1.086 PERFORMANCE OF DVBE SUBCONTRACTORS AND SUPPLIERS The DVBEs listed by the Contractor in response to the provisions in Section 2-1.04, "Submission of DVBE Information," and Section 3, "Award and Execution of Contract," of these special provisions, which are determined by the Department to be certified DVBEs, shall perform the work and supply the materials for which they are listed, unless the Contractor has received prior written authorization to perform the work with other forces or to obtain the materials from other sources. Authorization to utilize other forces or sources of materials may be requested for the following reasons: - A. The listed DVBE, after having had a reasonable opportunity to do so, fails or refuses to execute a written contract, when the written contract, based upon the general terms, conditions, plans and specifications for the project, or on the terms of the subcontractor's or supplier's written bid, is presented by the Contractor. - B. The listed DVBE becomes bankrupt or insolvent. - C. The listed DVBE fails or refuses to perform the subcontract or furnish the listed materials. - D. The Contractor stipulated that a bond was a condition of executing a subcontract and the listed DVBE subcontractor fails or refuses to meet the bond requirements of the Contractor. - E. The work performed by the listed subcontractor is substantially unsatisfactory and is not in substantial conformance with the plans and specifications or the subcontractor is substantially delaying or disrupting the progress of the work. - F. The listed DVBE subcontractor is not licensed pursuant to the Contractor's License Law. - G. It would be in the best interest of the State. The Contractor shall not be entitled to payment for the work or material unless it is performed or supplied by the listed DVBE or by other forces (including those of the Contractor) pursuant to prior written authorization of the Engineer. #### 5-1.09 SUBCONTRACTING Attention is directed to the provisions in Section 8-1.01, "Subcontracting," of the Standard Specifications, Section 2, "Proposal Requirements and Conditions," Section 2-1.04, "Submission of DVBE Information," and Section 3, "Award and Execution of Contract," of these special provisions and these special provisions. Pursuant to the provisions in Section 1777.1 of the Labor Code, the Labor Commissioner publishes and distributes a list of contractors ineligible to perform work as a subcontractor on a public works project. This list of debarred contractors is available from the Department of Industrial Relations web site at: http://www.dir.ca.gov/DLSE/Debar.html. The DVBE information furnished under Section 3-1.01A, "DVBE Information," of these special provisions is in addition to the subcontractor information required to be furnished in Section 8-1.01, "Subcontracting," and Section 2-1.054, "Required
Listing of Proposed Subcontractors," of the Standard Specifications. Section 10115 of the Public Contract Code requires the Department to implement provisions to establish a goal for Disabled Veteran Business Enterprise (DVBE) participation in highway contracts that are State funded. As a part of this requirement: - A. No substitution of a DVBE subcontractor shall be made at any time without the written consent of the Department, - B. If a DVBE subcontractor is unable to perform successfully and is to be replaced, the Contractor shall make good faith efforts to replace the original DVBE subcontractor with another DVBE subcontractor. The provisions in Section 2-1.02, "Disabled Veteran Business Enterprise (DVBE)," of these special provisions that DVBEs shall be certified on the date bids are opened does not apply to DVBE substitutions after award of the contract. ## 5-1.10 PROMPT PROGRESS PAYMENT TO SUBCONTRACTORS Attention is directed to the provisions in Sections 10262 and 10262.5 of the Public Contract Code and Section 7108.5 of the Business and Professions Code concerning prompt payment to subcontractors. #### 5-1.103 RECORDS The Contractor shall maintain cost accounting records for the contract pertaining to, and in such a manner as to provide a clear distinction between, the following six categories of costs of work during the life of the contract: - A. Direct costs of contract item work. - B. Direct costs of changes in character in conformance with Section 4-1.03C, "Changes in Character of Work," of the Standard Specifications. - C. Direct costs of extra work in conformance with Section 4-1.03D, "Extra Work," of the Standard Specifications. - D. Direct costs of work not required by the contract and performed for others. - E. Direct costs of work performed under a notice of potential claim in conformance with the provisions in Section 9-1.04, "Notice of Potential Claim," of the Standard Specifications. - F. Indirect costs of overhead. Cost accounting records shall include the information specified for daily extra work reports in Section 9-1.03C, "Records," of the Standard Specifications. The requirements for furnishing the Engineer completed daily extra work reports shall only apply to work paid for on a force account basis. The cost accounting records for the contract shall be maintained separately from other contracts, during the life of the contract, and for a period of not less than 3 years after the date of acceptance of the contract. If the Contractor intends to file claims against the Department, the Contractor shall keep the cost accounting records specified above until complete resolution of all claims has been reached. ## 5-1.11 AREAS FOR CONTRACTOR'S USE Attention is directed to the provisions in Section 7-1.19, "Rights in Land and Improvements," of the Standard Specifications and these special provisions. The highway right of way shall be used only for purposes that are necessary to perform the required work. The Contractor shall not occupy the right of way, or allow others to occupy the right of way, for purposes which are not necessary to perform the required work. No State-owned parcels adjacent to the right of way are available for the exclusive use of the Contractor within the contract limits. The Contractor shall secure, at the Contractor's own expense, areas required for plant sites, storage of equipment or materials, or for other purposes. No area is available within the contract limits for the exclusive use of the Contractor. However, temporary storage of equipment and materials on State property may be arranged with the Engineer, subject to the prior demands of State maintenance forces and to other contract requirements. Use of the Contractor's work areas and other State-owned property shall be at the Contractor's own risk, and the State shall not be held liable for damage to or loss of materials or equipment located within such areas. ## 5-1.12 ENVIRONMENTALLY SENSITIVE AREA The Contractor's attention is directed to the areas designated on the plans as Environmentally Sensitive Areas (ESA) and to State and Federal regulations which may pertain to such areas. These areas are protected and no entry by the Contractor for any purpose will be permitted unless specifically authorized in writing by the Engineer. The Contractor shall take measures to ensure that his forces do not enter or disturb these areas, including giving written notice to his employees and subcontractors. Attention is directed to "Temporary Fence (Type ESA)" of these special provisions regarding placement of temporary fence. Full compensation for conforming to the provisions in this section shall be considered as included in the prices paid for the various contract items of work and no additional compensation will be allowed therefor. #### **5-1.13 PAYMENTS** Attention is directed to Sections 9-1.06, "Partial Payments," and 9-1.07, "Payment After Acceptance," of the Standard Specifications. ## **5-1.14 FIRE PLAN** The Contractor shall cooperate with local fire prevention authorities in eliminating hazardous fire conditions and shall implement the following fire plan under the direction of the Engineer: - A. The Contractor shall be responsible for: - 1. obtaining the phone number of the nearest fire suppression agency and providing this phone number to the Engineer as a first order of work, - 2. immediately reporting to the nearest fire suppression agency fires occurring within the limits of the project, - 3. preventing project personnel from setting open fires not part of the work, unless the Engineer determines that the fire hazard is negligible. - preventing the escape of fires caused directly or indirectly as a result of project operations and extinguishing these fires. - B. Except for motor trucks, truck tractors, buses and passenger vehicles, the Contractor shall equip all hydro-carbon fueled engines, both stationary and mobile, including motorcycles, with spark arresters that meet United States Forest Service Standards as specified in the Forest Service Spark Arrester Guide and shall maintain the spark arresters in good operating condition. Spark arresters are not required by the State Department of Forestry or the United States Forest Service on equipment powered by properly maintained exhaust-driven turbo-charged engines or when equipped with scrubbers with properly maintained water levels. The Forest Service Spark Arrester Guide is available at the District Offices of the Department of Transportation. - C. Toilets shall have a metal receptacle, at least 150 mm in diameter by 200 mm deep, half-filled with sand for ashes and discarded smokes, and within easy reach of anyone utilizing the facility. - D. Equipment service areas, parking areas and gas and oil storage areas shall be located so that there is no flammable material within a radius of at least 15 m of these areas. Small mobile or stationary engine sites shall be cleared of flammable material for a radius of at least 4.6 m from the engine. - E. The Contractor shall furnish each piece of equipment with the following: - 1. one shovel and one fully charged fire extinguisher UL rated at 4 B:C or more on each truck, personnel vehicle tractor, grader or other heavy equipment, - 2. one shovel and one back-pack 20-L water-filled tank with pump for each welder, - 3. one shovel or one chemical pressurized fire extinguisher, fully charged, for each gasoline-powered tool, including but not limited to chain saws, soil augers, rock drills, etc. The required fire tools shall, at no time, be farther than 8 m from the point of operation of the power tool. Fire extinguishers shall be of the type and size required by the California Public Resource Code, Section 4431, and the California Administrative Code, Title 14, Section 1234, - 4. shovels shall be size "O" or larger and shall be not less than 1.2 m in length. - F. The Contractor shall furnish a pickup truck and driver that will be available for fire control during working hours and as specified herein. - 1. The truck shall be equipped with 2 shovels and 2 back-pack 20-L water-filled tanks with pumps, or other fire tools substituted on a one to one basis at the option of the Contractor and approved by the Engineer. - 2. In addition to being available at the site of the work, the truck and operator shall patrol the area of construction for not less than one-half hour after the shutdown of the work. Full compensation for conforming to the provisions herein shall be considered as included in the prices paid for the various contract items of work and no separate payment will be made therefor. **SECTION 6. (BLANK)** **SECTION 7. (BLANK)** #### **SECTION 8. MATERIALS** #### **SECTION 8-1. MISCELLANEOUS** #### 8-1.01 SUBSTITUTION OF NON-METRIC MATERIALS AND PRODUCTS Only materials and products conforming to the requirements of the specifications shall be incorporated in the work. When metric materials and products are not available, and when approved by the Engineer, and at no cost to the State, materials and products in the United States Standard Measures which are of equal quality and of the required properties and characteristics for the purpose intended, may be substituted for the equivalent metric materials and products, subject to the following provisions: - A. Materials and products shown on the plans or in the special provisions as being equivalent may be substituted for the metric materials and products specified or detailed on the plans. - B. Before other non-metric materials and products will be considered for use, the Contractor shall furnish, at the Contractor's expense, evidence satisfactory to the Engineer that the materials and products proposed for use are equal to or better than the materials and products specified or detailed on the plans. The burden of proof as to the quality and suitability of substitutions shall be upon the Contractor and the Contractor shall furnish necessary information as required by
the Engineer. The Engineer will be the sole judge as to the quality and suitability of the substituted materials and products and the Engineer's decision will be final. - C. When the Contractor elects to substitute non-metric materials and products, including materials and products shown on the plans or in the special provisions as being equivalent, the list of sources of material specified in Section 6-1.01, "Source of Supply and Quality of Materials," of the Standard Specification shall include a list of substitutions to be made and contract items involved. In addition, for a change in design or details, the Contractor shall submit plans and working drawings in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. The plans and working drawings shall be submitted at least 7 days before the Contractor intends to begin the work involved. Unless otherwise specified, the following substitutions of materials and products will be allowed: # SUBSTITUTION TABLE FOR SIZES OF HIGH STRENGTH STEEL FASTENERS ASTM Designation: A 325M | METRIC SIZE SHOWN ON THE PLANS | SIZE TO BE SUBSTITUTED | |--------------------------------|------------------------| | mm x thread pitch | inch | | M16 x 2 | 5/8 | | M20 x 2.5 | 3/4 | | M22 x 2.5 | 7/8 | | M24 x 3 | 1 | | M27 x 3 | 1-1/8 | | M30 x 3.5 | 1-1/4 | | M36 x 4 | 1-1/2 | # SUBSTITUTION TABLE FOR PLAIN WIRE REINFORCEMENT ASTM Designation: A 82 | SIZE TO BE SUBSTITUTED | |-----------------------------------| | 2 | | inch x 100 | | W1.4 | | W1.6 | | W2.0 | | W2.3 | | W2.9 | | W3.1 | | W3.5 | | W3.9, except W3.5 in piles only | | W4.0 | | W4.7 | | W5.0 | | W5.4 | | W6.2 | | W6.5 | | W7.8 | | W8.5, except W8.0 in piles only | | W9.3 | | W10.9, except W11.0 in piles only | | W12.4 | | W14.0 | | W15.5 | | | ## SUBSTITUTION TABLE FOR BAR REINFORCEMENT | METRIC BAR DESIGNATION | BAR DESIGNATION | | | | |--|---------------------------------------|--|--|--| | NUMBER ¹ SHOWN ON THE PLANS | NUMBER ² TO BE SUBSTITUTED | | | | | 10 | 3 | | | | | 13 | 4 | | | | | 16 | 5 | | | | | 19 | 6 | | | | | 22 | 7 | | | | | 25 | 8 | | | | | 29 | 9 | | | | | 32 | 10 | | | | | 36 | 11 | | | | | 43 | 14 | | | | | 57 | 18 | | | | ¹Bar designation numbers approximate the number of millimeters of the nominal diameter of the bars. No adjustment will be required in spacing or total number of reinforcing bars due to a difference in minimum yield strength between metric and non-metric bars. ²Bar numbers are based on the number of eighths of an inch included in the nominal diameter of the bars # SUBSTITUTION TABLE FOR SIZES OF: (1) STEEL FASTENERS FOR GENERAL APPLICATIONS (ASTM Designation: A 307 or AASHTO Designation: M 314, Grade 36 or 55), and (2) HIGH STRENGTH STEEL FASTENERS (ASTM Designation: A 325 or A 449) | METRIC SIZE SHOWN ON THE PLANS | SIZE TO BE SUBSTITUTED | |--------------------------------|------------------------| | mm | inch | | 6 or 6.35 | 1/4 | | 8 or 7.94 | 5/16 | | 10 or 9.52 | 3/8 | | 11 or 11.11 | 7/16 | | 13 or 12.70 | 1/2 | | 14 or 14.29 | 9/16 | | 16 or 15.88 | 5/8 | | 19 or 19.05 | 3/4 | | 22 or 22.22 | 7/8 | | 24, 25, or 25.40 | 1 | | 29 or 28.58 | 1-1/8 | | 32 or 31.75 | 1-1/4 | | 35 or 34.93 | 1-3/8 | | 38 or 38.10 | 1-1/2 | | 44 or 44.45 | 1-3/4 | | 51 or 50.80 | 2 | | 57 or 57.15 | 2-1/4 | | 64 or 63.50 | 2-1/2 | | 70 or 69.85 | 2-3/4 | | 76 or 76.20 | 3 | | 83 or 82.55 | 3-1/4 | | 89 or 88.90 | 3-1/2 | | 95 or 95.25 | 3-3/4 | | 102 or 101.60 | 4 | # SUBSTITUTION TABLE FOR NOMINAL THICKNESS OF SHEET METAL | SUBSTITUTION TABLE FOR NOMINAL THICKNESS OF SHEET METAL | | | | |---|-------------|--------------------|-------------| | UNCOATED HOT AND COLD ROLLED SHEETS | | | | | | | (GALVANIZED) | | | METRIC THICKNESS | GAGE TO BE | METRIC THICKNESS | GAGE TO BE | | SHOWN ON THE PLANS | SUBSTITUTED | SHOWN ON THE PLANS | SUBSTITUTED | | mm | inch | mm | inch | | 7.94 | 0.3125 | 4.270 | 0.1681 | | 6.07 | 0.2391 | 3.891 | 0.1532 | | 5.69 | 0.2242 | 3.510 | 0.1382 | | 5.31 | 0.2092 | 3.132 | 0.1233 | | 4.94 | 0.1943 | 2.753 | 0.1084 | | 4.55 | 0.1793 | 2.372 | 0.0934 | | 4.18 | 0.1644 | 1.994 | 0.0785 | | 3.80 | 0.1495 | 1.803 | 0.0710 | | 3.42 | 0.1345 | 1.613 | 0.0635 | | 3.04 | 0.1196 | 1.461 | 0.0575 | | 2.66 | 0.1046 | 1.311 | 0.0516 | | 2.28 | 0.0897 | 1.158 | 0.0456 | | 1.90 | 0.0747 | 1.006 or 1.016 | 0.0396 | | 1.71 | 0.0673 | 0.930 | 0.0366 | | 1.52 | 0.0598 | 0.853 | 0.0336 | | 1.37 | 0.0538 | 0.777 | 0.0306 | | 1.21 | 0.0478 | 0.701 | 0.0276 | | 1.06 | 0.0418 | 0.627 | 0.0247 | | 0.91 | 0.0359 | 0.551 | 0.0217 | | 0.84 | 0.0329 | 0.513 | 0.0202 | | 0.76 | 0.0299 | 0.475 | 0.0187 | | 0.68 | 0.0269 | | | | 0.61 | 0.0239 | | | | 0.53 | 0.0209 | | | | 0.45 | 0.0179 | | | | 0.42 | 0.0164 | | | | 0.38 | 0.0149 | | | # SUBSTITUTION TABLE FOR WIRE | METRIC THICKNESS | WIRE THICKNESS | | |--------------------|-------------------|----------| | SHOWN ON THE PLANS | TO BE SUBSTITUTED | GAGE NO. | | mm | inch | | | 6.20 | 0.244 | 3 | | 5.72 | 0.225 | 4 | | 5.26 | 0.207 | 5 | | 4.88 | 0.192 | 6 | | 4.50 | 0.177 | 7 | | 4.11 | 0.162 | 8 | | 3.76 | 0.148 | 9 | | 3.43 | 0.135 | 10 | | 3.05 | 0.120 | 11 | | 2.69 | 0.106 | 12 | | 2.34 | 0.092 | 13 | | 2.03 | 0.080 | 14 | | 1.83 | 0.072 | 15 | | 1.57 | 0.062 | 16 | | 1.37 | 0.054 | 17 | | 1.22 | 0.048 | 18 | | 1.04 | 0.041 | 19 | | 0.89 | 0.035 | 20 | # SUBSTITUTION TABLE FOR PIPE PILES | T. | | |------------------------------|-------------------| | METRIC SIZE | SIZE | | SHOWN ON THE PLANS | TO BE SUBSTITUTED | | mm x mm | inch x inch | | PP 360 x 4.55 | NPS 14 x 0.179 | | PP 360 x 6.35 | NPS 14 x 0.250 | | PP 360 x 9.53 | NPS 14 x 0.375 | | PP 360 x 11.12 | NPS 14 x 0.438 | | PP 406 x 12.70 | NPS 16 x 0.500 | | PP 460 x T | NPS 18 x T" | | PP 508 x T | NPS 20 x T" | | PP 559 x T | NPS 22 x T" | | PP 610 x T | NPS 24 x T" | | PP 660 x T | NPS 26 x T" | | PP 711 x T | NPS 28 x T" | | PP 762 x T | NPS 30 x T" | | PP 813 x T | NPS 32 x T" | | PP 864 x T | NPS 34 x T" | | PP 914 x T | NPS 36 x T" | | PP 965 x T | NPS 38 x T" | | PP 1016 x T | NPS 40 x T" | | PP 1067 x T | NPS 42 x T" | | PP 1118 x T | NPS 44 x T" | | PP 1219 x T | NPS 48 x T" | | PP 1524 x T | NPS 60 x T" | | The thisteness in millimeter | | The thickness in millimeters (T) represents an exact conversion of the thickness in inches (T"). # SUBSTITUTION TABLE FOR STRUCTURAL TIMBER AND LUMBER | METRIC MINIMUM | METRIC MINIMUM | NOMINAL | |--------------------|--------------------|-------------------| | DRESSED DRY, | DRESSED GREEN, | SIZE | | SHOWN ON THE PLANS | SHOWN ON THE PLANS | TO BE SUBSTITUTED | | mm x mm | mm x mm | inch x inch | | 19x89 | 20x90 | 1x4 | | 38x89 | 40x90 | 2x4 | | 64x89 | 65x90 | 3x4 | | 89x89 | 90x90 | 4x4 | | 140x140 | 143x143 | 6x6 | | 140x184 | 143x190 | 6x8 | | 184x184 | 190x190 | 8x8 | | 235x235 | 241x241 | 10x10 | | 286x286 | 292x292 | 12x12 | # SUBSTITUTION TABLE FOR NAILS AND SPIKES | METRIC COMMON NAIL, | METRIC BOX NAIL, | METRIC SPIKE, | SIZE | |---------------------|--------------------|---------------|--------------| | SHOWN ON THE PLANS | SHOWN ON THE PLANS | SHOWN ON THE | TO BE | | | | PLANS | SUBSTITUTED | | Length, mm | Length, mm | Length, mm | Penny-weight | | Diameter, mm | Diameter, mm | Diameter, mm | | | 50.80 | 50.80 | | 6d | | 2.87 | 2.51 | | | | 63.50 | 63.50 | | 8d | | 3.33 | 2.87 | | | | 76.20 | 76.20 | 76.20 | 10d | | 3.76 | 3.25 | 4.88 | | | 82.55 | 82.55 | 82.55 | 12d | | 3.76 | 3.25 | 4.88 | | | 88.90 | 88.90 | 88.90 | 16d | | 4.11 | 3.43 | 5.26 | | | 101.60 | 101.60 | 101.60 | 20d | | 4.88 | 3.76 | 5.72 | | | 114.30 | 114.30 | 114.30 | 30d | | 5.26 | 3.76 | 6.20 | | | 127.00 | 127.00 | 127.00 | 40d | | 5.72 | 4.11 | 6.68 | | | | | 139.70 | 50d | | | | 7.19 | | | | | 152.40 | 60d | | | | 7.19 | | # SUBSTITUTION TABLE FOR IRRIGATION COMPONENTS | MOMINIAI | |-------------------| | NOMINAL | | SIZE | | TO BE SUBSTITUTED | inch | | 1/2 | | 3/4 | | 1 | | 1-1/4 | | 1-1/2 | | 2 | | 2-1/2 | | 3 | | 4 | | 6 | | 8 | | 10 | | 12 | | | | 14 | | | Unless otherwise specified, substitutions of United States Standard Measures standard structural shapes corresponding to the metric designations shown on the plans and in conformance with the requirements in ASTM Designation: A 6/A 6M, Annex 2, will be allowed. ## 8-1.02 PREQUALIFIED AND TESTED SIGNING AND DELINEATION MATERIALS The Department maintains the following list of Prequalified and Tested Signing and Delineation Materials. The Engineer shall not be precluded from sampling and testing products on the list of Prequalified and Tested Signing and Delineation Materials. The manufacturer of products on the list of Prequalified and Tested Signing and Delineation Materials shall furnish the Engineer a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each type of traffic product supplied. For those categories of materials included in the list of Prequalified and Tested Signing and Delineation Materials, only those products shown within the listing may be used in the work. Other categories of products, not included in the list of Prequalified and Tested Signing and Delineation Materials, may be used in the work provided they conform to the requirements of the Standard Specifications. Materials and products may be added to the list of Prequalified and Tested Signing and Delineation Materials if the manufacturer submits a New Product Information Form to the New Product Coordinator at the Transportation Laboratory. Upon a Departmental request for samples, sufficient samples shall be submitted to permit performance of required tests. Approval of materials or products will depend upon compliance with the specifications and tests the Department may elect to perform. #### PAVEMENT MARKERS, PERMANENT TYPE #### Retroreflective
With Abrasion Resistant Surface (ARS) - A. Apex, Model 921AR (100 mm x 100 mm) - B. Avery Dennison (formerly Stimsonite), Models C88 (100 mm x 100 mm), 911 (100 mm x 100 mm) and 953 (70 mm x 114 mm) - C. Ray-O-Lite, Model "AA" ARS (100 mm x 100 mm) - D. 3M Series 290 (89 mm x 100 mm) ## Retroreflective With Abrasion Resistant Surface (ARS) (for recessed applications only) - A. Avery Dennison (formerly Stimsonite), Model 948 (58 mm x 119 mm) - B. Avery Dennison (formerly Stimsonite), Model 944SB (51 mm x 100 mm)* - C. Ray-O-Lite, Model 2002 (58 mm x 117 mm) - D. Ray-O-Lite, Model 2004 ARS (51 mm x 100 mm)* *For use only in 114 mm wide (older) recessed slots ## Non-Reflective For Use With Epoxy Adhesive, 100 mm Round A. Apex Universal (Ceramic) ## Non-Reflective For Use With Bitumen Adhesive, 100 mm Round - A. Alpine Products, "D-Dot" and "ANR" (ABS) - B. Apex Universal (Ceramic) - C. Apex Universal, Models 929 (ABS) and 929PP (Polypropylene) - D. Elgin Molded Plastics, "Empco-Lite" Model 900 (ABS) - E. Hi-Way Safety, Inc., Models P20-2000W and 2001Y (ABS) - F. Interstate Sales, "Diamond Back" (ABS) and (Polypropylene) - G. Novabrite Models Adot-w (White) Adot-y (Yellow), (ABS) - H. Road Creations, Model RCB4NR (Acrylic) - I. Zumar Industries, "Titan TM40A" (ABS) # PAVEMENT MARKERS, TEMPORARY TYPE # Temporary Markers For Long Term Day/Night Use (6 months or less) - A. Apex Universal, Model 924 (100 mm x 100 mm) - B. Elgin Molded Plastics, "Empco-Lite" Model 901 (100 mm x 100 mm) - C. Road Creations, Model R41C (100 mm x 100 mm) - D. Vega Molded Products "Temporary Road Marker" (75 mm x 100 mm) # Temporary Markers For Short Term Day/Night Use (14 days or less) (For seal coat or chip seal applications, clear protective covers are required) - A. Apex Universal, Model 932 - B. Bunzl Extrusion, Models T.O.M., T.R.P.M., and "HH" (High Heat) - C. Hi-Way Safety, Inc., Model 1280/1281 ## STRIPING AND PAVEMENT MARKING MATERIAL ## **Permanent Traffic Striping and Pavement Marking Tape** - A. Advanced Traffic Marking, Series 300 and 400 - B. Brite-Line, Series 1000 - C. Brite-Line, "DeltaLine XRP" - D. Swarco Industries, "Director 35" (For transverse application only) - E. Swarco Industries, "Director 60" - F. 3M, "Stamark" Series 380 and 5730 - G. 3M, "Stamark" Series 420 (For transverse application only) ## Temporary (Removable) Striping and Pavement Marking Tape (6 months or less) - A. Advanced Traffic Marking, Series 200 - B. Brite-Line, Series 100 - C. Garlock Rubber Technologies, Series 2000 - D. P.B. Laminations, Aztec, Grade 102 - E. Swarco Industries, "Director-2" - F. Trelleborg Industri, R140 Series - G. 3M, Series 620 "CR", and Series A750 - H. 3M, Series A145, Removable Black Line Mask (Black Tape: for use only on Asphalt Concrete Surfaces) I. Advanced Traffic Marking Black "Hide-A-Line" (Black Tape: for use only on Asphalt Concrete Surfaces) J. Brite-Line "BTR" Black Removable Tape (Black Tape: for use only on Asphalt Concrete Surfaces) K. Trelleborg Industri, RB-140 (Black Tape: for use only on Asphalt Concrete Surfaces) ## **Preformed Thermoplastic (Heated in place)** - A. Avery Dennison, "Hotape" - B. Flint Trading, "Premark" and "Premark 20/20 Flex" # Ceramic Surfacing Laminate, 150 mm x 150 mm A. Safeline Industries/Highway Ceramics, Inc. #### **CLASS 1 DELINEATORS** ## One Piece Driveable Flexible Type, 1700 mm - A. Bunzl Extrusion, "Flexi-Guide Models 400 and 566" - B. Carsonite, Curve-Flex CFRM-400 - C. Carsonite, Roadmarker CRM-375 - D. FlexStake, Model 654 TM - E. GreenLine Models HWD1-66 and CGD1-66 - F. J. Miller Industries, Model JMI-375 (with soil anchor) # Special Use Flexible Type, 1700 mm - A. Bunzl Extrusion, Model FG 560 (with 450 mm U-Channel base) - B. Carsonite, "Survivor" (with 450 mm U-Channel base) - C. Carsonite, Roadmarker CRM-375 (with 450 mm U-Channel base) - D. FlexStake, Model 604 - E. GreenLine Models HWDU and CGD (with 450 mm U-Channel base) - F. Safe-Hit with 200 mm pavement anchor (SH248-GP1) - G. Safe-Hit with 380 mm soil anchor (SH248-GP2) and with 450 mm soil anchor (SH248-GP3) ## Surface Mount Flexible Type, 1200 mm - A. Bent Manufacturing Company, Masterflex Model MF-180EX-48 - B. Carsonite, "Super Duck II" - C. FlexStake, Surface Mount, Models 704 and 754 TM ## **CHANNELIZERS** ## Surface Mount Type, 900 mm - A. Bent Manufacturing Company, Masterflex Models MF-360-36 (Round) and MF-180-36 (Flat) - B. Bunzl Extrusion, Flex-Guide Models FG300LD and FG300UR - C. Carsonite, "Super Duck" (Flat SDF-436, Round SDR-336) - D. Carsonite, "Super Duck II" Model SDCF203601MB "The Channelizer" - E. FlexStake, Surface Mount, Models 703 and 753 TM - F. GreenLine, Model SMD-36 - G. Hi-Way Safety, Inc. "Channel Guide Channelizer" Model CGC36 - H. Repo, Models 300 and 400 - I. Safe-Hit, Guide Post, Model SH236SMA - J. The Line Connection, "Dura-Post" Model DP36-3 (Permanent) - K. The Line Connection, "Dura-Post" Model DP36-3C (Temporary) ## **CONICAL DELINEATORS, 1070 mm** (For 700 mm Traffic Cones, see Standard Specifications) - A. Bent Manufacturing Company "T-Top" - B. Plastic Safety Systems "Navigator-42" - C. Radiator Specialty Company "Enforcer" - D. Roadmaker Company "Stacker" - E. TrafFix Devices "Grabber" ## **OBJECT MARKERS** ## Type "K", 450 mm - A. Carsonite, Model SMD 615 - B. FlexStake, Model 701 KM - C. Repo, Models 300 and 400 - D. Safe-Hit, Model SH718SMA - E. The Line Connection, Model DP21-4K # Type "K-4" / "Q" Object Markers, 600 mm - A. Bent Manufacturing "Masterflex" Model MF-360-24 - B. Bunzl Extrusion, Model FG324PE - C. Carsonite, Super Duck II - D. FlexStake, Model 701KM - E. Repo, Models 300 and 400 - F. Safe-Hit, Models SH8 24SMA WA and SH8 24GP3 WA - G. The Line Connection, Model DP21-4Q # CONCRETE BARRIER MARKERS AND TEMPORARY RAILING (TYPE K) REFLECTORS Impactable Type - A. ARTUK, "FB" - B. Bunzl Extrusion, Model PCBM-12 - C. Duraflex Corp., "Flexx 2020" and "Electriflexx" - D. Hi-Way Safety, Inc., Model GMKRM100 - E. Sun-Lab Technology, "Safety Guide Light Model TM-5" ## Non-Impactable Type - A. ARTUK, JD Series - B. Vega Molded Products, Models GBM and JD ## THRIE BEAM BARRIER MARKERS (For use to the left of traffic) - A. Bunzl Extrusion, "Mini" (75 mm x 254 mm) - B. Duraflex Corp., "Railrider" # CONCRETE BARRIER DELINEATORS, 400 mm (For use to the right of traffic) - A. Bunzl Extrusion, Model PCBM T-16 - B. Safe-Hit, Model SH216RBM - C. Sun-Lab Technology, "Safety Guide Light, Model TM16," 75 mm x 300 mm ## CONCRETE BARRIER-MOUNTED MINI-DRUM (260 mm x 360 mm x 570 mm) A. Stinson Equipment Company "SaddleMarker" #### SOUND WALL DELINEATOR (Applied vertically. Place top of 75 mm x 300 mm reflective element at 1200 mm above roadway) - A. Bunzl Extrusion, PCBM S-36 - B. Sun-Lab Technology, "Safety Guide Light, Model SM12," 75 mm x 300 mm #### **GUARD RAILING DELINEATOR** (Place top of reflective element at 1200 mm above plane of roadway) ## Wood Post Type, 686 mm - A. Bunzl Extrusion, FG 427 and FG 527 - B. Carsonite, Model 427 - C. FlexStake, Model 102 GR - D. GreenLine GRD 27 - E. J. Miller Model JMI-375G - F. Safe-Hit, Model SH227GRD ## **Steel Post Type** A. Carsonite, Model CFGR-327 with CFGRBK300 Mounting Bracket #### RETROREFLECTIVE SHEETING ## Channelizers, Barrier Markers, and Delineators - A. Avery Dennison T-6500 Series (Formerly Stimsonite, Series 6200) (For rigid substrate devices only) - B. Nippon Carbide, Flexible Ultralite Grade (ULG) II - C. Reflexite, PC-1000 Metalized Polycarbonate - D. Reflexite, AC-1000 Acrylic - E. Reflexite, AP-1000 Metalized Polyester - F. Reflexite, Conformalight, AR-1000 Abrasion Resistant Coating - G. 3M, High Intensity ## Traffic Cones, 330 mm Sleeves A. Reflexite SB (Polyester), Vinyl or "TR" (Semi-transparent) ## Traffic Cones, 100 mm and 150 mm Sleeves - A. Nippon Carbide, Flexible Ultralite Grade (ULG) II - B. Reflexite, Vinyl, "TR" (Semi-transparent) or "Conformalight" - C. 3M Series 3840 #### **Barrels and Drums** - A. Avery Dennison W-6100 - B. Nippon Carbide, Flexible Ultralite Grade (ULG) II - C. Reflexite, "Conformalight", "Super High Intensity" or "High Impact Drum Sheeting" - D. 3M Series 3810 # Barricades: Type I, Medium-Intensity (Typically Enclosed Lens, Glass-Bead Element) - A. American Decal, Adcolite - B. Avery Dennison, T-1500 and T-1600 series - C. 3M Engineer Grade, Series 3170 ## Barricades: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element) - A. Avery Dennison, T-2500 Series - B. Kiwalite Type II - C. Nikkalite 1800 Series ## Signs: Type II, Medium-High-Intensity (Typically Enclosed Lens, Glass-Bead Element) - A. Avery Dennison, T-2500 Series - B. Kiwalite, Type II - C. Nikkalite 1800 Series ## Signs: Type III, High-Intensity (Typically Encapsulated Glass-Bead Element) - A. Avery Dennison, T-5500 Series - B. Nippon Carbide, Nikkalite Brand Ultralite Grade II - C. 3M Series 3870 # Signs: Type IV, High-Intensity (Typically Unmetallized Microprismatic Element) A. Avery Dennison, T-6500 Series (Formerly Stimsonite Series 6200) # Signs: Type VI, Elastomeric (Roll-Up) High-Intensity, without Adhesive - A. Reflexite "Vinyl" (Orange) - B. Reflexite "SuperBright" (Fluorescent orange) - C. Reflexite "Marathon" (Fluorescent orange) - D. 3M Series RS34 (Orange) and RS20 (Fluorescent orange) # Signs: Type VII, Super-High-Intensity (Typically Unmetallized Microprismatic Element) A. 3M LDP Series 3970 # Signs: Type VIII, Super-High-Intensity (Typically Unmetallized Microprismatic Element) A. Avery Dennison, T-7500 Series #### SPECIALTY SIGNS - A. All Sign Products, STOP Sign (All Plastic), 750 mm - B. Relexite "Endurance" Work Zone Sign ## SIGN SUBSTRATE # Fiberglass Reinforced Plastic (FRP) - A. Fiber-Brite - B. Sequentia, "Polyplate" Aluminum #### **8-1.03 ASPHALT** The first paragraph and tables following the first paragraph in Section 92-1.02, "Grades," of the Standard Specifications shall not apply. The grade of asphalt to be used will be specified in "Asphalt Concrete" of
these special provisions. The safe transportation, storage, use, and disposal of the asphalt specified shall be the responsibility of the Contractor. A Certificate of Compliance, as specified in Section 92-1.03, "Test Report," of the Standard Specifications, shall accompany each shipment of asphalt to the project. When PBA Grade 6a, 6b or 7 is specified, the Certificate of Compliance shall include actual results of tests completed by the producer in addition to the items enumerated in Section 92-1.03 of the Standard Specifications. The Certificate of Compliance shall verify that the results of AASHTO Test Method T240 (Mass Loss after Rolling Thin Film Oven Test) indicate a maximum mass loss of 0.6 percent and that AASHTO Test Method T48 (Flash Point, Cleveland Open Cup) indicate a minimum flash point of 232°C. The actual formulation used by the asphalt producer shall be available to the Department upon written request. The Department will execute a non-disclosure agreement if requested by the asphalt producer. For PBA Grades 6a, 6b or 7, if the results of mass loss after Rolling Thin Film Oven Test (AASHTO Test Method T240) or Flash Point, Cleveland Open Cup (AASHTO Test Method T48), shown on the Certificate of Compliance are not within the limits specified in the table entitled "PERFORMANCE BASED ASPHALT BINDER GRADES" or if the results are not shown on the Certificate of Compliance, the individual shipment of asphalt will be rejected. Rejected asphalt shall not be used on the project. Should rejected asphalt be unloaded into bulk storage tanks, asphalt from the tanks shall not be used on the project until tests and a Certificate of Compliance are furnished for the material and indicate compliance with the specifications. Asphalt to be used as a binder for asphalt concrete will be sampled using the sampling device specified in Section 39-3.01C, "Asphalt Binder Storage," of the Standard Specifications. Two samples per operating day, each consisting of 2 one-liter containers, will be taken from the bulk storage tank feeder line. For PBA Grades 6a, 6b or 7, if the test result of samples taken from the bulk storage tank, indicate mass loss greater than 0.6 percent, the material containing the paving asphalt represented by the tests shall be removed. However, if requested in writing by the Contractor and approved by the Engineer, the material containing the paving asphalt with mass loss greater than 0.6 percent may remain in place, and the Contractor shall pay to the State the amount calculated by the formulae listed below. - A. For mass loss test results over 0.6 percent but less than or equal to 1.0 percent: - 1. (25 percent multiplied by 25 tonne average multiplied by the invoice price of paving asphalt) - B. For mass loss test results over 1.0 percent: - 1. (100 percent multiplied by 25 tonne average multiplied by the invoice price of paving asphalt). - C. The Department may deduct this amount from any moneys due, or that may become due, the Contractor under the contract. Each sample from the bulk storage shall represent 25 tonne average. The delivered price of the paving asphalt shall be based on a certified invoice provided by the Contractor. ## PERFORMANCE BASED ASPHALT BINDER GRADES | | AASHTO | , | | | | | | | | | |---|----------|-----------|-----------|----------|----------|----------|--|--|--|--| | | Test | PBA Grade | | | | | | | | | | Specification Designation | Method | 1 | 4 | 6a | 6b | 7 | | | | | | Penetration | | | | | | | | | | | | (25°C, 100 g, 5 s), dmm | | | | | | | | | | | | RTFO Aged Residue, Min (Note1) | T49 | 25 | 20 | _ | | | | | | | | Absolute Viscosity | | | | | | | | | | | | $(60^{\circ}\text{C}), \text{Pa} \bullet \text{s} (\text{x}10^{-1}) \text{ (Note 2)}$ | | | | | | | | | | | | Original Binder, min | T202 | 800 | 2800 | 2000 | 2000 | 1100 | | | | | | RTFO Aged Residue | T202 | 2500-5000 | 14000 Max | 5000 Min | 5000 Min | 3000 Min | | | | | | | | (Note 3) | | | | | | | | | | Kinematic Viscosity | | | | | | | | | | | | $(135^{\circ}\text{C}), \text{ m}^2/\text{s}(\text{x}10^{-6})$ | | | | | | | | | | | | Original Binder, Max | T201 | | | 2000 | 2000 | 2000 | | | | | | RTFO Aged Residue, Min | T201 | 275 | 350 | 275 | 275 | 275 | | | | | | Absolute Viscosity Ratio | | | | | | | | | | | | (60°C), Max | | | | | | | | | | | | RTFO Visc./Orig. Visc. | | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | | Flash Point, Cleveland Open Cup, | | | | | | | | | | | | °C, (Note 4) | | | | | | | | | | | | Original Binder, Min | T48 | 232 | 232 | 232 | 232 | 232 | | | | | | Mass Loss After RTFO Test, % | T240 | Report | Report | 0.60 | 0.60 | 0.60 | | | | | | (Note 5) | | (Note 6) | | | | | | | | | | Solubility in Trichloroethylene, % | | | | _ | _ | _ | | | | | | Original Binder, Min | T44 | 99.0 | 99.0 | Report | Report | Report | | | | | | Ductility | | | | | | | | | | | | (25°C, 5 cm/min), cm | m.5.1 | | 50 | 60 | 60 | 7.5 | | | | | | RTFO Aged Residue, Min | T51 | 75 | 50 | 60 | 60 | 75 | | | | | | On Residue from Pav @: or | PP1 | 90°C | 100°C | 100°C | 100°C | 110°C | | | | | | Residue from Tilt Oven @ | Q1 . 5) | 10 | 2.6 | 26 | 2.6 | 70 | | | | | | 113°C for: (hours) | (Note 7) | 18 | 36 | 36 | 36 | 72 | | | | | | SSD ≥ -115(SSV)-50.6 | (Note 9) | | | | | 25°C | | | | | | Stiffness, 300 MPa, Max @: | TP1 | -6°C | -6°C | -24°C | -30°C | -6°C | | | | | | and M-value, 0.30, Min | | | | | | | | | | | # Notes: - 1. "RTFO Aged Residue" means the asphaltic residue obtained using the Rolling Thin Film Oven Test (RTFO Test), AASHTO Test Method T240 or ASTM Designation: D 2827. - 2. The Absolute Viscosity (60°C) of PBA 6a, 6b, and 7 will be determined at 1 sec-1 using ASTM Designation: D 4957 with Asphalt Institute Vacuum Capillary Viscometers. - 3. Where actual limits (e.g., 2500-500) are indicated, the actual test results shall be part of the certified copy of test results, or shall be furnished with the Certificate of Compliance. - 4. Actual results of the test shall be part of the certified copy of test results and when PBA Grade 6a, 6b, or 7 is used an additional statement verifying an acceptable flash point shall be included with the Certificate of Compliance. - 5. Actual results of the test shall be part of the certified copy of test results and when PBA Grade 6a, 6b, or 7 is used an additional statement verifying an acceptable mass loss shall be included with the Certificate of Compliance. - 6. Where "Report" is indicated, there is no requirement; however the actual results of the test shall be part of the certified copy of test results, or shall be furnished with the Certificate of Compliance. - 7. "Tilt Oven Residue" means the asphalt obtained using California Test 374, Method B, "Method for Determining Asphalt Durability Using the California Tilt-Oven Durability Test." - 8. SSD = Shear susceptibility of Delta, SSV = Shear susceptibility of Viscosity. - 9. California Test 381. ### 8-1.04 ENGINEERING FABRICS Engineering fabrics shall conform to the provisions in Section 88, "Engineering Fabrics," of the Standard Specifications and these special provisions. Filter fabric for this project shall be ultraviolet (UV) ray protected. ## **SECTION 8-2. CONCRETE** #### 8-2.01 PORTLAND CEMENT CONCRETE Portland cement concrete shall conform to the provisions in Section 90, "Portland Cement Concrete," of the Standard Specifications and these special provisions. References to Section 90-2.01, "Portland Cement," of the Standard Specifications shall mean Section 90-2.01, "Cement," of the Standard Specifications. Mineral admixture shall be combined with cement in conformance with the provisions in Section 90-4.08, "Required Use of Mineral Admixtures," of the Standard Specifications for the concrete materials specified in Section 56-2, "Roadside Signs," of the Standard Specifications. The requirements of Section 90-4.08, "Required Use of Mineral Admixture," of the Standard Specifications shall not apply to Section 19-3.025C, "Soil Cement Bedding," of the Standard Specifications. The Department maintains a list of sources of fine and coarse aggregate that have been approved for use with a reduced amount of mineral admixture in the total amount of cementitious material to be used. A source of aggregate will be considered for addition to the approved list if the producer of the aggregate submits to the Transportation Laboratory certified test results from a qualified testing laboratory that verify the aggregate complies with the requirements. Prior to starting the testing, the aggregate test shall be registered with the Department. A registration number can be obtained by calling (916) 227-7228. The registration number shall be used as the identification for the aggregate sample in correspondence with the Department. Upon request, a split of the tested sample shall be provided to the Department. Approval of aggregate will depend upon compliance with the specifications, based on the certified test results submitted, together with any replicate testing the Department may elect to perform. Approval will expire 3 years from the date the most recent registered and evaluated sample was collected from the aggregate source. Qualified testing laboratories shall conform to the following requirements: - A. Laboratories performing ASTM Designation: C 1293 shall participate in the Cement and Concrete Reference Laboratory (CCRL) Concrete Proficiency Sample Program and shall have received a score of 3 or better on all tests of the previous 2 sets of concrete samples. - B. Laboratories performing ASTM Designation: C 1260 shall participate in the Cement and Concrete Reference Laboratory (CCRL) Pozzolan Proficiency Sample Program and shall have received a score of 3 or better on the shrinkage and soundness tests of the previous 2 sets of pozzolan samples. Aggregates on the list shall conform to one of the following requirements: - A. When the
aggregate is tested in conformance with the requirements in California Test 554 and ASTM Designation: C 1293, the average expansion at one year shall be less than or equal to 0.040 percent; or - B. When the aggregate is tested in conformance with the requirements in California Test 554 and ASTM Designation: C 1260, the average of the expansion at 16 days shall be less than or equal to 0.15 percent. The amounts of cement and mineral admixture used in cementitious material shall be sufficient to satisfy the minimum cementitious material content requirements specified in Section 90-1.01, "Description," or Section 90-4.05, "Optional Use of Chemical Admixtures," of the Standard Specifications and shall conform to the following: - A. The minimum amount of cement shall not be less than 75 percent by mass of the specified minimum cementitious material content. - B. The minimum amount of mineral admixture to be combined with cement shall be determined using one of the following criteria: - 1. When the calcium oxide content of a mineral admixture is equal to or less than 2 percent by mass, the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix - 2. When the calcium oxide content of a mineral admixture is greater than 2 percent by mass, and any of the aggregates used are not listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 25 percent by mass of the total amount of cementitious material to be used in the mix. - 3. When the calcium oxide content of a mineral admixture is greater than 2 percent by mass and the fine and coarse aggregates are listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 15 percent by mass of the total amount of cementitious material to be used in the mix. - 4. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," of the Standard Specifications is used, the amount of mineral admixture shall not be less than 10 percent by mass of the total amount of cementitious material to be used in the mix. - 5. When a mineral admixture that conforms to the provisions for silica fume in Section 90-2.04, "Admixture Materials," of the Standard Specifications is used and the fine and coarse aggregates are listed on the approved list as specified in these special provisions, then the amount of mineral admixture shall not be less than 7 percent by mass of the total amount of cementitious material to be used in the mix. - C. The total amount of mineral admixture shall not exceed 35 percent by mass of the total amount of cementitious material to be used in the mix. Where Section 90-1.01, "Description," of the Standard Specifications specifies a maximum cementitious content in kilograms per cubic meter, the total mass of cement and mineral admixture per cubic meter shall not exceed the specified maximum cementitious material content. The Contractor will be permitted to use Type III portland cement for concrete used in the manufacture of precast concrete members. ## **SECTION 8-3. WELDING** ### **8-3.01 WELDING** #### **GENERAL** Flux core welding electrodes conforming to the requirements of AWS A5.20 E6XT-4 or E7XT-4 shall not be used to perform welding for this project. Wherever reference is made to the following AWS welding codes in the Standard Specifications, on the plans, or in these special provisions, the year of adoption for these codes shall be as listed: | AWS Code | Year of Adoption | |--------------------|------------------| | D1.1 | 2000 | | D1.4 | 1998 | | D1.5 | 1995 | | D1.5 (metric only) | 1996 | Requirements of the AWS welding codes shall apply unless specified otherwise in the Standard Specifications, on the plans, or in these special provisions. Wherever the abbreviation AWS is used, it shall be equivalent to the abbreviations ANSI/AWS or ANSI/AASHTO/AWS. Sections 6.1.2 through 6.1.4.3 of AWS D 1.1, Sections 7.1.1 and 7.1.2 of AWS D 1.4, and Sections 6.1.1.1 through 6.1.3.3 of AWS D 1.5 are replaced with the following: Quality Control (QC) shall be the responsibility of the Contractor. As a minimum, the Contractor shall perform inspection and testing of each weld joint prior to welding, during welding, and after welding as specified in this section and as necessary to ensure that materials and workmanship conform to the requirements of the contract documents. The QC Inspector shall be the duly designated person who acts for and on behalf of the Contractor for inspection, testing, and quality related matters for all welding. Quality Assurance (QA) is the prerogative of the Engineer. The QA Inspector is the duly designated person who acts for and on behalf of the Engineer. The QC Inspector shall be responsible for quality control acceptance or rejection of materials and workmanship, and shall be currently certified as an AWS Certified Welding Inspector (CWI) in conformance with the requirements in AWS QC1, "Standard and Guide for Qualification of Welding Inspectors." The QC Inspector may be assisted by an Assistant QC Inspector provided that this individual is currently certified as an AWS Certified Associate Welding Inspector (CAWI) in conformance with the requirements in AWS QC1, "Standard and Guide for Qualification of Welding Inspectors," or has equivalent qualifications. The QC Inspector shall monitor the Assistant QC Inspector's work, and shall be responsible for signing all reports. When the term "Inspector" is used without further qualification, it shall refer to the OC Inspector. Section 6.14.6, "Personnel Qualification," of AWS D 1.1, Section 7.7.6, "Personnel Qualification," of AWS D 1.4, and Section 6.1.3.4, "Personnel Qualification," of AWS D 1.5 are replaced with the following: Personnel performing nondestructive testing (NDT) shall be qualified and certified in conformance with the requirements of the American Society for Nondestructive Testing (ASNT) Recommended Practice No. SNT-TC-1A and the Written Practice of the NDT firm. The Written Practice of the NDT firm shall meet or exceed the guidelines of the ASNT Recommended Practice No. SNT-TC-1A. Only individuals who are 1) certified as an NDT Level II, or 2) Level III technicians who hold a current ASNT Level III certificate in that discipline and are authorized and certified to perform the work of Level II technicians, shall perform NDT, review the results, and prepare the written reports. Section 6.5.4, "Scope of Examination," of AWS D 1.1 and Section 7.5.4 of AWS D 1.4 are replaced with the following: The QC Inspector shall inspect and approve each joint preparation, assembly practice, welding technique, and the performance of each welder, welding operator, and tack welder to make certain that the applicable requirements of this code and the approved welding procedure specification (WPS) are met. Section 6.5.4 of AWS D 1.5 is replaced with the following: The QC Inspector shall inspect and approve each joint preparation, assembly practice, welding technique, and the performance of each welder, welding operator, and tack welder to make certain that the applicable requirements of this code and the approved WPS are met. The QC Inspector shall examine the work to make certain that it meets the requirements of Sections 3 and 9.21. The size and contour of all welds shall be measured using suitable gages. Visual inspection for cracks in welds and base metal, and for other discontinuities should be aided by strong light magnifiers, or such other devices as may be helpful. Acceptance criteria different from those specified in this code may be used when approved by the Engineer. Section 6.6.5, "Nonspecified Nondestructive Testing Other Than Visual," of AWS D 1.1, Section 6.6.5 of AWS D 1.4 and Section 6.6.5 of AWS D 1.5 shall not apply. For any welding, the Engineer may direct the Contractor to perform NDT that is in addition to the visual inspection or NDT specified in the AWS welding codes, in the Standard Specifications, or in these special provisions. Additional NDT required by the Engineer, will be paid for as extra work as provided in Section 4-1.03D, "Extra Work," of the Standard Specifications. Should any welding deficiencies be discovered by this additional NDT, the cost of the testing will not be paid for as extra work but shall be at the Contractor's expense. Required repair work to correct welding deficiencies, whether discovered by the required visual inspection or NDT, or by additional NDT directed by the Engineer, and any associated delays or expenses caused to the Contractor by performing these repairs, shall be at the Contractor's expense. The Engineer shall have the authority to verify the qualifications or certifications of any welder, QC Inspector, or NDT personnel to specified levels by retests or other means. A sufficient number of QC Inspectors shall be provided to ensure continuous inspection when any welding is being performed. Continuous inspection, as a minimum, shall include (1) having QC Inspectors continually present on the shop floor or project site when any welding operation is being performed, and (2) having a QC Inspector within such close proximity of all welding operations so that inspections by the QC Inspector of each operation, at each welding location, shall not lapse for a period exceeding 30 minutes. Inspection and approval of all joint preparations, assembly practices, welding techniques, and the performance of each welder, welding operator, and tack welder shall be documented by the QC Inspector on a daily basis for each day that welding is performed. The QC Inspector shall confirm and document compliance with the requirements of the AWS code criteria and the requirements of these special provisions on all weld joints before welding, during welding, and after the completion of each weld. When joint
details that are not prequalified by the applicable AWS codes are proposed for use in the work, welders using these details shall perform a qualification test plate using the approved WPS variables and the joint detail to be used in production. The test plate shall be the maximum thickness to be used in production. The test plate shall be mechanically or radiographically tested as directed by the Engineer. Mechanical and radiographic testing and acceptance criteria shall be as specified in the applicable AWS codes. The period of effectiveness for a welder's or welding operator's qualification shall be a maximum of 3 years for the same weld process, welding position, and weld type. A valid qualification at the beginning of work on a contract will be acceptable for the entire period of the contract, as long as the welder's work remains satisfactory. ### WELDING QUALITY CONTROL Welding quality control shall conform to the requirements in the AWS welding codes, the Standard Specifications, and these special provisions. Unless otherwise specified, welding quality control shall apply when any work is welded in conformance with the provisions in Section 49, "Piling," Section 52, "Reinforcement," Section 55, "Steel Structures," Section 56-1, "Overhead Sign Structures," Section 75-1.035, "Bridge Joint Restrainer Units," or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications. The Contractor shall designate in writing a welding Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for the quality of welding, including materials and workmanship, performed by the Contractor and subcontractors. The QCM shall be the sole individual responsible to the Contractor for submitting, receiving, and approving all correspondence, required submittals, and reports to and from the Engineer. The QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor. Welding inspection personnel or NDT firms to be used in the work shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project, except for the following conditions: - A. The welding is performed at a permanent fabrication or manufacturing facility which is certified under the AISC Quality Certification Program, Category Cbr, Major Steel Bridges. - B. The welding is performed at a permanent fabrication or manufacturing facility which is certified under the AISC Quality Certification Program, Category Sbd, Conventional Steel Building Structures. This condition shall apply only for work welded in conformance with the provisions in Section 56-1, "Overhead Sign Structures" or Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications. - C. The welding is performed on pipe pile material at a permanent pipe manufacturing facility where an automatic welding process or seamless pipe operation is used in conformance with the requirements in the applicable welding code as specified elsewhere in these special provisions. For welding performed at such facilities, the inspection personnel or NDT firms may be employed or compensated by the facility performing the welding. Prior to submitting the Welding Quality Control Plan (WQCP) required herein, a pre-welding meeting between the Engineer, Contractor, and any entity performing welding for this project, shall be held to discuss the requirements for the WOCP. The Contractor shall submit to the Engineer, in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications, 3 copies of a separate WQCP for each item of work for which welding is to be performed. The Contractor shall allow the Engineer 2 weeks to review the WQCP submittal after a complete plan has been received. Except for work that is welded in conformance with Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, and for pipe piling produced at a permanent manufacturing facility as specified above, no welding shall be performed until the WQCP is approved in writing by the Engineer. Materials welded in conformance with Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, and pipe piling produced at such permanent manufacturing facilities, shall not be incorporated into the work until the WQCP is approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. An amended WQCP or any addendum to the approved WQCP shall be submitted to, and approved in writing by the Engineer, for proposed revisions to the approved WQCP. An amended WQCP or addendum will be required for revisions to the WQCP, including but not limited to a revised WPS, additional welders, changes in NDT firms or procedures, QC, or NDT personnel, or updated systems for tracking and identifying welds. The Engineer shall have 3 working days to complete the review of the amended WQCP or addendum. Work affected by the proposed revisions shall not be performed until the amended WQCP or addendum has been approved. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Each WQCP shall include the applicable portions of the following, as determined by the Engineer: - A. The name of the welding firm and any required NDT inspection personnel or firms. - B. A manual prepared by the NDT inspection personnel or firm that shall include equipment, testing procedures, code of safe practices, the Written Practice of the NDT inspection personnel or firm, and the names, qualifications, and documentation of certifications for all personnel to be used. - C. The name of the QCM and the names, qualifications, and documentation of certifications for all QC Inspectors and Assistant OC Inspectors to be used. - D. An organizational chart showing all QC personnel and their assigned QC responsibilities. - E. The methods and frequencies for performing all required quality control procedures, including QC inspection forms to be used, as required by the specifications including: - 1. all visual inspections. - 2. all NDT including radiographic geometry, penetrameter and shim selection, film quality, film processing, radiograph identification and marking system, and film interpretation and reports. - 3. calibration procedures and calibration frequency for all NDT equipment. - F. A system for the identification and tracking of all welds, NDT, and any required repairs, and a procedure for the reinspection of repaired welds. The system shall have provisions for 1) permanently identifying each weld and the person who performed the weld, 2) placing all identification and tracking information on each radiograph, 3) a method of reporting nonconforming welds to the Engineer, and 4) a method of documentation of repairs and reinspection of nonconforming welds. - G. Standard procedures for performing noncritical repair welds. Noncritical repair welds are-defined as welds to deposit additional weld beads or layers to compensate for insufficient weld size and to fill limited excavations that were performed to remove unacceptable edge or surface discontinuities, rollover or undercut. The depth of these excavations shall not exceed 65 percent of the specified weld size. - H. The WPS, including documentation of all supporting Procedure Qualification Record (PQR) tests performed, and the name of the testing laboratory who performed the tests, to verify the acceptability of the WPS. The submitted WPS shall be within the allowable period of effectiveness. - I. Documentation of all certifications for welders for each weld process and position that will be used. Certifications shall list the electrodes used, test position, base metal and thickness, tests performed, and the witnessing authority. All certifications shall be within the allowable period of effectiveness. - J. One authorized copy or original code book for each of all AWS welding codes and the FCP which are applicable to the welding to be performed. These codes and the FCP shall become the permanent property of the Department. - K. Forms to be used for Certificates of Compliance, daily production logs, and daily reports. After final approval of the WQCP, amended WQCP, or addendum, the Contractor shall submit 7 copies to the Engineer of the approved documents. It is expressly understood that the Engineer's approval of the Contractor's WQCP shall not relieve the Contractor of any responsibility under the contract for the successful completion of the work in conformance with the requirements of the plans and specifications. The Engineer's approval shall not constitute a waiver of any requirement of the plans and specifications nor relieve the Contractor of any obligation thereunder; and defective work, materials, and equipment may be rejected notwithstanding approval of the WQCP. A daily production log for welding shall be kept by the QCM for each day that welding is performed. The log shall clearly indicate the locations of all welding, except
partial penetration longitudinal seam welds performed in conformance with Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications. The log shall include the welders' names, amount of welding performed, any problems or deficiencies discovered, and any testing or repair work performed, at each location. The daily report from each QC Inspector shall also be included in the log. The following items shall be included in a Welding Report that is to be submitted to the Engineer within 7 days following the performance of any welding. For work welded in conformance with Section 86-2.04, "Standards, Steel Pedestals and Posts," of the Standard Specifications, and for piling produced at a permanent manufacturing facility, the following items shall be included in a Welding Report that is to be submitted to the Engineer 48 hours prior to furnishing a Certificate of Compliance for the material: - A. Reports of all visual weld inspections and NDT. - B. Radiographs and radiographic reports, and other required NDT reports. - C. Documentation that the Contractor has evaluated all radiographs and other nondestructive tests and corrected all rejectable deficiencies, and all repaired welds have been reexamined by the required NDT and found acceptable. - D. Daily production log. Radiographic envelopes shall have clearly written on the outside of the envelope the following information: name of the QCM, name of the nondestructive testing firm, name of the radiographer, date, contract number, complete part description, and all included weld numbers or a report number, as detailed in the WQCP. In addition, all innerleaves shall have clearly written on them the part description and all included weld numbers, as detailed in the WQCP. Reports regarding NDT, including radiographs, shall be signed by both the NDT technician and the person that performed the review, and then submitted directly to the QCM for review and signature prior to submittal to the Engineer. Corresponding names shall be clearly printed or typewritten next to all signatures. The Engineer will review the Welding Report to determine if the Contractor is in conformance with the WQCP. Unless otherwise specified, the Engineer shall be allowed 7 working days to review the report and respond in writing after a complete Welding Report has been received. Prior to receiving notification from the Engineer of the Contractor's conformance with the WQCP, the Contractor may encase in concrete or cover welds for which a Welding Report has been submitted. However, should the Contractor elect to encase or cover those welds prior to receiving notification from the Engineer, it is expressly understood that the Contractor shall not be relieved of the responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase or cover welds pending notification by the Engineer, and in the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The QC Inspector shall provide reports to the QCM on a daily basis for each day that welding is performed. Except for noncritical weld repairs, the Engineer shall be notified immediately in writing when welding problems, deficiencies, base metal repairs, or any other type of repairs not submitted in the WQCP are discovered and also of the proposed repair procedures to correct them. The Contractor shall allow the Engineer one week to review these procedures. No remedial work shall begin until the repair procedures are approved in writing by the Engineer. In the event the Engineer fails to complete the review within the time allowed, and if, in the opinion of the Engineer, completion of the work is delayed or interfered with by reason of the Engineer's delay in completing the review, the Contractor will be compensated for any resulting loss, and an extension of time will be granted, in the same manner as provided for in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. The QCM shall sign and furnish to the Engineer, a Certificate of Compliance in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications for each item of work for which welding was performed. The certificate shall state that all of the materials and workmanship incorporated in the work, and all required tests and inspections of this work, have been performed in conformance with the details shown on the plans, the Standard Specifications, and these special provisions. ## **PAYMENT** Full compensation for conforming to the requirements of this section shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be allowed therefor. # SECTION 9. DESCRIPTION OF BRIDGE WORK The bridge work consists, in general, of constructing a sidehill viaduct and soil nail retaining wall in accordance with the details shown on the plans titled: SIDEHILL VIADUCT Bridge No. 36-0109 ## SECTION 10. CONSTRUCTION DETAILS ### **SECTION 10-1. GENERAL** ### 10-1.01 ORDER OF WORK Order of work shall conform to the provisions in Section 5-1.05, "Order of Work," of the Standard Specifications and these special provisions. The Contractor shall construct the temporary fence (Type ESA) and temporary silt fence prior to the start of any operation in which soil will be disturbed, including construction of temporary access roads. Attention is directed to "Cured-In-Place Pipe" of these special provisions regarding diverting water through the construction site. Attention is directed to "Shotcrete" of these special provisions regarding constructing a panel prior to performing shotcrete work. Attention is directed to "Fire Plan" of these special provisions regarding cooperating with local fire prevention authorities and implementing the fire plan established for this project. Temporary railing (Type K) and temporary crash cushions shall be secured in place prior to commencing work for which the temporary railing and crash cushions are required. Prior to commencement of the temporary signal functional test at any location, all items of work related to traffic control shall be completed and all temporary pavement delineation shall be in place at that location. Attention is directed to "Maintaining Traffic" and "Temporary Pavement Delineation" of these special provisions. Before obliterating any pavement delineation (traffic stripes, pavement markings, and pavement markers) that is to be replaced on the same alignment and location, as determined by the Engineer, the pavement delineation shall be referenced by the Contractor, with a sufficient number of control points to reestablish the alignment and location of the new pavement delineation. The references shall include the limits or changes in striping pattern, including one- and 2-way barrier lines, limit lines, crosswalks and other pavement markings. The Contractor's list of reference points shall be submitted to the Engineer for review and approval prior to disturbing the pavement delineation. Full compensation for referencing existing pavement delineation shall be considered as included in the contract prices paid for new pavement delineation and no additional compensation will be allowed therefor. At the end of each working day if a difference in excess of 45 mm exists between the elevation of the existing pavement and the elevation of excavations within 2.4 m of the traveled way, material shall be placed and compacted against the vertical cuts adjacent to the traveled way, unless excavation is protected by temporary railing (Type K). During excavation operations, native material may be used for this purpose; however, once placing of the structural section commences, structural material shall be used. The material shall be placed to the level of the elevation of the top of existing pavement and tapered at a slope of 1:4 (vertical:horizontal) or flatter to the bottom of the excavation. Treated base shall not be used for the taper. Full compensation for placing the material on a 1:4 slope, regardless of the number of times the material is required, and subsequent removing or reshaping of the material to the lines and grades shown on the plans shall be considered as included in the contract price paid for the materials involved and no additional compensation will be allowed therefor. No payment will be made for material placed in excess of that required for the structural section. At those locations exposed to public traffic where guard railings or barriers are to be constructed, reconstructed, or removed and replaced, the Contractor shall schedule operations so that at the end of each working day there shall be no post holes open nor shall there be any railing or barrier posts installed without the blocks and rail elements assembled and mounted thereon. Not less than 30 days prior to applying seeds, the Contractor shall furnish the Engineer a statement from the vendor that the order for the seed required for this contract has been received and accepted by the vendor. The statement from the vendor shall include the names and quantity of seed ordered and the anticipated date of delivery. ### 10-1.02 WATER POLLUTION CONTROL Water pollution control work shall conform to the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications and these special provisions. Water pollution control work shall conform to the requirements in the "Storm Water
Pollution Prevention Plan (SWPPP) and Water Pollution Control Program (WPCP) Preparation Manual" and the "Construction Site Best Management Practices (BMPs) Manual," and addenda thereto issued up to, and including, the date of advertisement of the project, hereafter referred to respectively as the "Preparation Manual" and the "Construction Site BMP Manual" and collectively as the "Manuals." Copies of the Manuals may be obtained from the Department of Transportation, Material Operations Branch, Publication Distribution Unit, 1900 Royal Oaks Drive, Sacramento, California 95815, Telephone: (916) 445-3520. Copies of the Manuals may also be obtained from the Department's Internet Web Site http://www.dot.ca.gov/hq/construc/stormwater.html. The Contractor shall know and fully comply with the applicable provisions of the Manuals and Federal, State, and local regulations that govern the Contractor's operations and storm water discharges from both the project site and areas of disturbance outside the project limits during construction. Unless arrangements for disturbance of areas outside the project limits are made by the Department and made part of the contract, it is expressly agreed that the Department assumes no responsibility whatsoever to the Contractor or property owner with respect to any arrangements made between the Contractor and property owner to allow disturbance of areas outside the project limits. The Contractor shall be responsible for the costs and for liabilities imposed by law as a result of the Contractor's failure to comply with the requirements set forth in this section "Water Pollution Control" including, but not limited to, compliance with the applicable provisions of the Manuals and Federal, State, and local regulations. For the purposes of this paragraph, costs and liabilities include, but are not limited to, fines, penalties, and damages whether assessed against the State or the Contractor, including those levied under the Federal Clean Water Act and the State Porter Cologne Water Quality Act. In addition to the remedies authorized by law, an amount of the money due the Contractor under the contract, as determined by the Department, may be retained by the State of California until disposition has been made of the costs and liabilities. The retention of money due the Contractor shall be subject to the following: - A. The Department will give the Contractor 30 days notice of the Department's intention to retain funds from partial payments which may become due to the Contractor prior to acceptance of the contract. Retention of funds from payments made after acceptance of the contract may be made without prior notice to the Contractor. - B. No retention of additional amounts out of partial payments will be made if the amount to be retained does not exceed the amount being withheld from partial payments pursuant to Section 9-1.06, "Partial Payments," of the Standard Specifications. - C. If the Department has retained funds and it is subsequently determined that the State is not subject to the costs and liabilities in connection with the matter for which the retention was made, the Department shall be liable for interest on the amount retained at the legal rate of interest for the period of the retention. Conformance with the provisions in this section "Water Pollution Control" shall not relieve the Contractor from the Contractor's responsibilities as provided in Section 7, "Legal Relations and Responsibilities," of the Standard Specifications. ## WATER POLLUTION CONTROL PROGRAM PREPARATION, APPROVAL AND UPDATES As part of the water pollution control work, a Water Pollution Control Program, hereafter referred to as the "WPCP," is required for this contract. The WPCP shall conform to the provisions in Section 7-1.01G, "Water Pollution," of the Standard Specifications, the requirements in the Manuals, and these special provisions. No work having potential to cause water pollution, as determined by the Engineer, shall be performed until the WPCP has been approved by the Engineer. Within 5 days after the approval of the contract, the Contractor shall submit 3 copies of the WPCP to the Engineer. The Engineer will have 3 days to review the WPCP. If revisions are required, as determined by the Engineer, the Contractor shall revise and resubmit the WPCP within 3 days of receipt of the Engineer's comments. The Engineer will have 3 days to review the revisions. Upon the Engineer's approval of the WPCP, 3 additional copies of the WPCP incorporating the required changes shall be submitted to the Engineer. Minor changes or clarifications to the initial submittal may be made and attached as amendments to the WPCP. In order to allow construction activities to proceed, the Engineer may conditionally approve the WPCP while minor revisions or amendments are being completed. The WPCP shall identify pollution sources that may adversely affect the quality of storm water discharges associated with the project and shall identify water pollution control measures, hereafter referred to as control measures, to be constructed, implemented, and maintained in order to reduce to the extent feasible pollutants in storm water discharges from the construction site during construction under this contract. The WPCP shall incorporate control measures in the following categories: - A. Soil stabilization; - B. Sediment control; - C. Tracking control; - D. Wind erosion control; - E. Non-storm water control; and - F. Waste management and material pollution control. Specific objectives and minimum requirements for each category of control measures are contained in the Manuals. The Contractor shall consider the objectives and minimum requirements presented in the Manuals for each of the above categories. When minimum requirements are listed for any category, the Contractor shall incorporate into the WPCP and implement on the project, one or more of the listed minimum controls required in order to meet the pollution control objectives for the category. In addition, the Contractor shall consider other control measures presented in the Manuals and shall incorporate into the WPCP and implement on the project the control measures necessary to meet the objectives of the WPCP. The Contractor shall document the selection process in conformance with the procedure specified in the Manuals. The WPCP shall include, but not be limited to, the following items as described in the Preparation Manual: - A. Project description and Contractor's certification; - B. Project information; - C. Pollution sources, control measures, and water pollution control drawings; and - D. Amendments, if any. The Contractor shall amend the WPCP, graphically and in narrative form, whenever there is a change in construction activities or operations which may affect the discharge of significant quantities of pollutants to surface waters, ground waters, municipal storm drain systems or when deemed necessary by the Engineer. The WPCP shall be amended if the WPCP has not achieved the objective of reducing pollutants in storm water discharges. Amendments shall show additional control measures or revised operations, including those in areas not shown in the initially approved WPCP, which are required on the project to control water pollution effectively. Amendments to the WPCP shall be submitted for review and approval by the Engineer in the same manner specified for the initially approved WPCP. Amendments shall be dated and attached to the onsite WPCP document. The Contractor shall keep a copy of the WPCP, together with updates, revisions and amendments at the project site. ### WPCP IMPLEMENTATION Upon approval of the WPCP, the Contractor shall be responsible throughout the duration of the project for installing, constructing, inspecting, and maintaining the control measures included in the WPCP and any amendments thereto and for removing and disposing of temporary control measures. Unless otherwise directed by the Engineer or specified in these special provisions, the Contractor's responsibility for WPCP implementation shall continue throughout any temporary suspension of work ordered in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. Requirements for installation, construction, inspection, maintenance, removal, and disposal of control measures are specified in the Manuals and these special provisions. Soil stabilization practices and sediment control measures, including minimum requirements, shall be provided throughout the rainy season, defined as between November 1 and April 1. Implementation of soil stabilization practices and sediment control measures for soil-disturbed areas on the project site shall be completed, except as provided for below, not later than 20 days prior to the beginning of the rainy season or upon start of applicable construction activities for projects which begin either during or within 20 days of the rainy season. Throughout the rainy season, the active, soil-disturbed area of the project site shall be not more than 0.5 hectares. The Engineer may approve, on a case-by-case basis, expansions of the active, soil-disturbed area limit. The Contractor shall demonstrate the ability and preparedness to fully deploy soil stabilization practices and sediment control measures to protect soil-disturbed areas on the project site before the onset of precipitation. A quantity of soil stabilization and sediment control materials shall be maintained on site equal to 100 percent of that sufficient to protect unprotected, soil-disturbed areas on the project site. A detailed plan for the mobilization of sufficient labor and equipment shall be maintained to fully deploy control measures required to protect unprotected, soil-disturbed areas on the project site prior to the onset of precipitation. A current inventory of control measure materials and the detailed mobilization plan shall be included as part of
the WPCP. Throughout the rainy season, soil-disturbed areas on the project site shall be considered to be nonactive whenever soil disturbing activities are expected to be discontinued for a period of 20 or more days and the areas are fully protected. Areas that will become nonactive either during the rainy season or within 20 days thereof shall be fully protected with soil stabilization practices and sediment control measures within 10 days of the discontinuance of soil disturbing activities or prior to the onset of precipitation, whichever is first to occur. Throughout the rainy season, active soil-disturbed areas of the project site shall be fully protected at the end of each day with soil stabilization practices and sediment control measures unless fair weather is predicted through the following work day. The weather forecast shall be monitored by the Contractor on a daily basis. The National Weather Service forecast shall be used. An alternative weather forecast proposed by the Contractor may be used if approved by the Engineer. If precipitation is predicted prior to the end of the following work day, construction scheduling shall be modified, as required, and functioning control measures shall be deployed prior to the onset of the precipitation. The Contractor shall implement, year-round and throughout the duration of the project, control measures included in the WPCP for tracking control, wind erosion control, non-storm water control, and waste management and material pollution control. The Engineer may order the suspension of construction operations which create water pollution if the Contractor fails to conform to the provisions in this section "Water Pollution Control" as determined by the Engineer. ## **MAINTENANCE** To ensure the proper implementation and functioning of control measures, the Contractor shall regularly inspect and maintain the construction site for the control measures identified in the WPCP. The Contractor shall identify corrective actions and time needed to address any deficient measures or reinitiate any measures that have been discontinued. The construction site inspection checklist provided in the Preparation Manual shall be used to ensure that the necessary measures are being properly implemented, and to ensure that the control measures are functioning adequately. One copy of each site inspection record shall be submitted to the Engineer. During the rainy season, inspections of the construction site shall be conducted by the Contractor to identify deficient measures, as follows: - A. Prior to a forecast storm; - B. After all precipitation which causes runoff capable of carrying sediment from the construction site; - C. At 24-hour intervals during extended precipitation events; and - D. Routinely, at a minimum of once every 2 weeks. If the Contractor or the Engineer identifies a deficiency in the deployment or functioning of an identified control measure, the deficiency shall be corrected immediately. The deficiency may be corrected at a later date and time if requested by the Contractor and approved by the Engineer in writing, but not later than the onset of subsequent precipitation events. The correction of deficiencies shall be at no additional cost to the State. #### **PAYMENT** Full compensation for conforming to the provisions in this section shall be considered as included in the prices paid for the various contract items of work involved and no additional compensation will be allowed therefor. The Engineer will retain an amount equal to 25 percent of the estimated value of the contract work performed during estimate periods in which the Contractor fails to conform to the provisions in this section "Water Pollution Control" as determined by the Engineer. Retentions for failure to conform to the provisions in this section "Water Pollution Control" shall be in addition to the other retentions provided for in the contract. The amounts retained for failure of the Contractor to conform to the provisions in this section will be released for payment on the next monthly estimate for partial payment following the date that a WPCP has been implemented and maintained and water pollution is adequately controlled, as determined by the Engineer. # 10-1.03 TEMPORARY SILT FENCE Temporary silt fence shall conform to the details shown on the plans and these special provisions. Temporary silt fence shall be furnished, installed, maintained, and removed at the locations shown on the plans. Preparation shall conform to the provisions in Section 20-3.02, "Preparation," of the Standard Specifications. Attention is directed to "Water Pollution Control" of these special provisions. ## **MATERIALS** Materials for temporary silt fence shall conform to the provisions in Section 20-2, "Materials," of the Standard Specifications. Temporary silt fence shall be a prefabricated silt fence with a minimum woven polypropylene fabric width of 900 mm and a minimum tensile strength of 0.44-kN, conforming to the requirements of ASTM Designation: D 4632. ### INSTALLATION Temporary silt fence shall be installed as shown on the plans and in conformance with Detail Sheets 1 and 2 in Appendix C, CD36(2) in the Construction Contractors Guide and Specifications of the Caltrans Storm Water Quality Handbooks. When joints are necessary, the temporary silt fence shall overlap a minimum of 150 mm with both posts tied together. Temporary silt fences shall be maintained to provide for adequate sediment holding capacity. Sediment deposits shall be removed when the sediment deposit reaches approximately one-third of the fence height. Removed sediment shall be deposited within the project in such a way that the sediment is not subject to erosion by wind or water, or as directed by the Engineer. When no longer required for the intended purpose, as determined by the Engineer, temporary silt fence shall be removed from the site of the work. Holes, depressions or any other ground disturbance caused by the removal of the temporary silt fence shall be backfilled and repaired in conformance with the provisions in the second paragraph of Section 15-1.02, "Preservation of Property," of the Standard Specifications, prior to installation of erosion control (blanket). ### MEASUREMENT AND PAYMENT The quantity of temporary silt fence will be measured by the meter as determined from actual measurements, the measurements to be made parallel with the ground slope along the line of the completed temporary silt fence, deducting the widths of openings. The contract price paid per meter for temporary silt fence shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing temporary silt fence, complete in place, including trench excavation and backfill, and maintenance and removal of temporary silt fence, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Temporary silt fence placed at location other than as shown on the project plans or directed by the Engineer, in conformance with the Contractor's Water Pollution Control Program, will not be measured and will be paid for as specified in "Water Pollution Control" of these special provisions. No adjustment of compensation will be made for any increase or decrease in the quantities of temporary silt fence required, regardless of the reason for the increase or decrease. The provisions in Section 4-1.03B, "Increased or Decreased Quantities," of the Standard Specifications shall not apply to temporary silt fence. ## 10-1.04 TEMPORARY FENCE (TYPE ESA) Temporary fence (Type ESA) shall be furnished, constructed, maintained, and later removed as shown on the plans, as specified in these special provisions and as directed by the Engineer. Temporary fence (Type ESA) shall not be attached to tree trunks or any other vegetation. Temporary fence (Type ESA) shall be located so that it will be obvious to heavy equipment operators. Used materials may be installed provided the used materials are good, sound and are suitable for the purpose intended, as determined by the Engineer. Materials may be commercial quality provided the dimensions and sizes of the materials are equal to, or greater than, the dimensions and sizes shown on the plans or specified herein. Fabric used for temporary fence (Type ESA) shall also conform to the following: | Material: | Polypropylene or Polyethylene | |---------------------|-------------------------------| | Color: | Orange | | Mesh opening: | 50 mm x 50 mm | | UV Resistance: | Fully Stabilized | | Fabric Width, min.: | 1.22 m | Posts shall be either metal or wood at the Contractor's option and shall be suitable for the purpose intended, and shall be driven into the soil a minimum of 400 mm. Post spacing shall be adequate to completely support the fence fabric in an upright position. Galvanizing and painting of steel items will not be required. Treating wood with a wood preservative will not be required. Concrete footings for posts will not be required. Temporary fence (Type ESA) shall be constructed in accordance with the manufacturer's recommendations. Temporary fence (Type ESA) that is damaged during the progress of the work shall be repaired or replaced by the Contractor at the Contractor's expense. When no longer required for the work, as determined by the Engineer, temporary fence (Type ESA) shall be removed. Removed facilities shall become the property of the Contractor and shall be removed from the site of the work, except as otherwise provided in this section. Holes caused by the removal of temporary fence shall be backfilled in conformance with the provisions in the second paragraph of Section 15-1.02, "Preservation of Property," of the Standard Specifications. Temporary fence (Type ESA) will be measured and paid for by the meter as provided in Section 80, "Fences," of the Standard Specifications. The
contract price paid per meter for temporary fence (Type ESA) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing temporary fence (Type ESA) complete in place, including installation, maintenance, removal, and disposal of materials, as shown on the plans, as specified in these special provisions, and as directed by the Engineer. ## 10-1.05 PRESERVATION OF PROPERTY Attention is directed to Section 7-1.11, "Preservation of Property," of the Standard Specifications and these special provisions. Existing trees, shrubs and other plants, that are not to be removed as shown on the plans or specified in these special provisions, and are injured or damaged by reason of the Contractor's operations, shall be replaced by the Contractor. The minimum size of tree replacement shall be 600 mm box and the minimum size of shrub replacement shall be No. 15 container. Replacement planting shall conform to the requirements in Section 20-4.07, "Replacement," of the Standard Specifications. The Contractor shall water replacement plants in conformance with the provisions in Section 20-4.06, "Watering," of the Standard Specifications. Damaged or injured plants shall be removed and disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13 of the Standard Specifications. At the option of the Contractor, removed trees and shrubs may be reduced to chips. The chipped material shall be spread within the highway right of way at locations designated by the Engineer. Replacement planting of injured or damaged trees, shrubs and other plants shall be completed not less than 5 working days prior to acceptance of the contract. Replacement plants shall be watered as necessary to maintain the plants in a healthy condition for 125 working days. ## 10-1.06 PROGRESS SCHEDULE Progress schedules are required for this contract and shall be submitted in conformance with the provisions in Section 8-1.04, "Progress Schedule," of the Standard Specifications and these special provisions, unless otherwise authorized in writing by the Engineer. The second paragraph of Section 8-1.04, "Progress Schedule," of the Standard Specifications shall not apply. ### 10-1.07 OBSTRUCTIONS Attention is directed to Section 8-1.10, "Utility and Non-Highway Facilities," and Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions. The Contractor shall notify the Engineer and the appropriate regional notification center for operators of subsurface installations at least 2 working days, but not more than 14 calendar days, prior to performing any excavation or other work close to any underground pipeline, conduit, duct, wire or other structure. Regional notification centers include, but are not limited to, the following: | Notification Center | Telephone Number | |---|------------------| | Underground Service Alert-Northern California (USA) | 1-800-642-2444 | | | 1-800-227-2600 | | Underground Service Alert-Southern California (USA) | 1-800-422-4133 | | | 1-800-227-2600 | #### 10-1.08 MOBILIZATION Mobilization shall conform to the provisions in Section 11, "Mobilization," of the Standard Specifications. #### 10-1.09 CONSTRUCTION AREA TRAFFIC CONTROL DEVICES Flagging, signs, and all other traffic control devices furnished, installed, maintained, and removed when no longer required shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Category 1 traffic control devices are defined as those devices that are small and lightweight (less than 45 kg), and have been in common use for many years. The devices shall be known to be crashworthy by crash testing, crash testing of similar devices, or years of demonstrable safe performance. Category 1 traffic control devices include traffic cones, plastic drums, portable delineators, and channelizers. If requested by the Engineer, the Contractor shall provide written self-certification for crashworthiness of Category 1 traffic control devices. Self-certification shall be provided by the manufacturer or Contractor and shall include the following: date, Federal Aid number (if applicable), expenditure authorization, district, county, route and kilometer post of project limits; company name of certifying vendor, street address, city, state and zip code; printed name, signature and title of certifying person; and an indication of which Category 1 traffic control devices will be used on the project. The Contractor may obtain a standard form for self-certification from the Engineer. Category 2 traffic control devices are defined as those items that are small and lightweight (less than 45 kg), that are not expected to produce significant vehicular velocity change, but may otherwise be potentially hazardous. Category 2 traffic control devices include: barricades and portable sign supports. Category 2 devices purchased on or after October 1, 2000 shall be on the Federal Highway Administration (FHWA) Acceptable Crashworthy Category 2 Hardware for Work Zones list. This list is maintained by FHWA and can be located at the following internet address: http://safety.fhwa.dot.gov/fourthlevel/hardware/listing.cfm?code=workzone. The Department maintains a secondary list at the following internet address: http://www.dot.ca.gov/hq/traffops/signtech/signdel/pdffiles.htm. Category 2 devices that have not received FHWA acceptance, and were purchased before October 1, 2000, may continue to be used until they complete their useful service life or until January 1, 2003, whichever comes first. Category 2 devices in use that have received FHWA acceptance shall be labeled with the FHWA acceptance letter number and the name of the manufacturer by the start of the project. The label shall be readable. After January 1, 2003, all Category 2 devices without a label shall not be used on the project. Full compensation for providing self-certification for crashworthiness of Category 1 traffic control devices and labeling Category 2 devices as specified shall be considered as included in the prices paid for the various contract items of work requiring the use of the Category 1 or Category 2 traffic control devices and no additional compensation will be allowed therefor. ## 10-1.10 CONSTRUCTION AREA SIGNS Construction area signs shall be furnished, installed, maintained, and removed when no longer required in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Attention is directed to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Type II retroreflective sheeting shall not be used on construction area sign panels. The Contractor shall notify the appropriate regional notification center for operators of subsurface installations at least 2 working days, but not more than 14 calendar days, prior to commencing excavation for construction area sign posts. The regional notification centers include, but are not limited to, the following: | Notification Center | Telephone Number | |---|----------------------------------| | Underground Service Alert-Northern California (USA) | 1-800-642-2444
1-800-227-2600 | | Underground Service Alert-Southern California (USA) | 1-800-422-4133
1-800-227-2600 | Excavations required to install construction area signs shall be performed by hand methods without the use of power equipment, except that power equipment may be used if it is determined there are no utility facilities in the area of the proposed post holes. Sign substrates for stationary mounted construction area signs may be fabricated from fiberglass reinforced plastic as specified under "Prequalified and Tested Signing and Delineation Materials" of these special provisions. The Contractor may be required to cover certain signs during the progress of the work. Signs that are no longer required or that convey inaccurate information to the public shall be immediately covered or removed, or the information shall be corrected. Covers for construction area signs shall be of sufficient size and density to completely block out the complete face of the signs. The retroreflective face of the covered signs shall not be visible either during the day or at night. Covers shall be fastened securely so that the signs remain covered during inclement weather. Covers shall be replaced when they no longer cover the signs properly. # 10-1.11 MAINTAINING TRAFFIC Attention is directed to Sections 7-1.08, "Public Convenience," 7-1.09, "Public Safety," and 12, "Construction Area Traffic Control Devices," of the Standard Specifications and to the provisions in "Public Safety" of these special provisions and these special provisions. Nothing in these special provisions shall be construed as relieving the Contractor from the responsibilities specified in Section 7-1.09. Lane closures shall conform to the provisions in section "Traffic Control System for Lane Closure" of these special provisions. Personal vehicles of the Contractor's employees shall not be parked on the traveled way or shoulders including any section closed to public traffic. The Contractor shall notify local authorities of the Contractor's intent to begin work at least 5 days before work is begun. The Contractor shall cooperate with local authorities relative to handling traffic through the area and shall make arrangements relative to keeping the working area clear of parked vehicles. Whenever vehicles or equipment are parked on the shoulder within 1.8 m of a traffic lane, the shoulder area shall be closed with fluorescent traffic cones or portable delineators placed on a taper in advance of the parked vehicles or
equipment and along the edge of the pavement at 7.5 m intervals to a point not less than 7.5 m past the last vehicle or piece of equipment. A minimum of 9 cones or portable delineators shall be used for the taper. A C23 (Road Work Ahead) or C24 (Shoulder Work Ahead) sign shall be mounted on a portable sign stand with flags. The sign shall be placed where designated by the Engineer. During drilling operations, the road may be closed and public traffic stopped for periods not to exceed 2 hours, between 11:00 p.m. and 5:00 a.m., Monday through Thursday and Sunday. After each closure, accumulated traffic shall pass through the work before another closure is made. Lanes shall be closed only during the hours shown on the charts included in this section "Maintaining Traffic." Except work required under Sections 7-1.08 and 7-1.09, work that interferes with public traffic shall be performed only during the hours shown for lane closures. Designated legal holidays are: January 1st, the third Monday in February, the last Monday in May, July 4th, the first Monday in September, November 11th, Thanksgiving Day, and December 25th. When a designated legal holiday falls on a Sunday, the following Monday shall be a designated legal holiday. When November 11th falls on a Saturday, the preceding Friday shall be a designated legal holiday. Minor deviations from the requirements of this section concerning hours of work which do not significantly change the cost of the work may be permitted upon the written request of the Contractor if, in the opinion of the Engineer, public traffic will be better served and the work expedited. These deviations shall not be adopted by the Contractor until the Engineer has approved the deviations in writing. Other modifications will be made by contract change order. | Chart No. 1
Two-Lane Conventional Highway Lane Requirements |--|-----------|---|---|---|---|---|--|--|--|---|---|---|---|---|--|--|--|---|---|---|---| | Location:SCr-9-17.4 KP (PM 10.8) | a.m. p.m. | FROM HOUR TO HOUR 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 | Mondays through Thursdays | R | R | R | R | R | R | | | | R | R | R | R | R | | | | R | R | R | R | | Fridays | R | R | R | R | R | R | | | | R | R | R | | | | | | | | | | | Saturdays | Sundays | Day before designated legal holiday | R | R | R | R | R | R | | | | | | | | | | | | | | | | | Designated legal holidays | Legend: R | REMARKS: This chart does not apply during time periods in which the temporary one-way traffic control signal is operation under pre-set timing phases with no additional traffic control being used. Traffic may be stopped in both directions for up to 30 minutes at a time in the time periods on the chart for drilling operations. Traffic queues shall be allowed to dissipate to less than 0.8 km (0.5 mile) in each direction before another full closure is allowed. | Provide advance notification by Changeable Message Signs (one in each direction of travel) 5 days before operations that stop both directions of travel concurrently. | ## 10-1.12 CLOSURE REQUIREMENTS AND CONDITIONS Lane closures shall conform to the provisions in "Maintaining Traffic" of these special provisions and these special provisions. The term closure, as used herein, is defined as the closure of a traffic lane or lanes, including ramp or connector lanes, within a single traffic control system. ## **CLOSURE SCHEDULE** By noon Monday, the Contractor shall submit a written schedule of planned closures for the following week period, defined as Friday noon through the following Friday noon. The Closure Schedule shall show the locations and times when the proposed closures are to be in effect. The Contractor shall use the Closure Schedule request forms furnished by the Engineer. Closure Schedules submitted to the Engineer with incomplete, unintelligible or inaccurate information will be returned for correction and resubmittal. The Contractor will be notified of disapproved closures or closures that require coordination with other parties as a condition of approval. Amendments to the Closure Schedule, including adding additional closures, shall be submitted to the Engineer, in writing, at least 3 working days in advance of a planned closure. Approval of amendments to the Closure Schedule will be at the discretion of the Engineer. The Contractor shall confirm, in writing, all scheduled closures by no later than 8:00 a.m. 3 working days prior to the date on which the closure is to be made. Approval or denial of scheduled closures will be made no later than 4:00 p.m. 2 working days prior to the date on which the closure is to be made. Closures not confirmed or approved will not be allowed. Confirmed closures that are cancelled due to unsuitable weather may be rescheduled at the discretion of the Engineer for the following working day. ### **CONTINGENCY PLAN** The Contractor shall prepare a contingency plan for reopening closures to public traffic. The Contractor shall submit the contingency plan for a given operation to the Engineer within one working day of the Engineer's request. ### LATE REOPENING OF CLOSURES If a closure is not reopened to public traffic by the specified time, work shall be suspended in conformance with the provisions in Section 8-1.05, "Temporary Suspension of Work," of the Standard Specifications. The Contractor shall not make any further closures until the Engineer has accepted a work plan, submitted by the Contractor, that will insure that future closures will be reopened to public traffic at the specified time. The Engineer will have 2 working days to accept or reject the Contractor's proposed work plan. The Contractor will not be entitled to any compensation for the suspension of work resulting from the late reopening of closures. ## **COMPENSATION** The Contractor shall notify the Engineer of any delay in the Contractor's operations due to the following conditions, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of those conditions, and the Contractor's loss due to that delay could not have been avoided by rescheduling the affected closure or by judicious handling of forces, equipment and plant, the delay will be considered a right of way delay within the meaning of Section 8-1.09, "Right of Way Delays," and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09: - A. The Contractor's proposed Closure Schedule is denied and his planned closures are within the time frame allowed for closures in "Maintaining Traffic" of these special provisions, except that the Contractor will not be entitled to any compensation for amendments to the Closure Schedule that are not approved. - B. The Contractor is denied a confirmed closure. Should the Engineer direct the Contractor to remove a closure prior to the time designated in the approved Closure Schedule, any delay to the Contractor's schedule due to removal of the closure will be considered a right of way delay within the meaning of Section 8-1.09, "Right of Way Delays," and compensation for the delay will be determined in conformance with the provisions in Section 8-1.09. ### 10-1.13 CONSTRUCTION ZONE ENHANCED ENFORCEMENT Construction zone enhanced enforcement will be provided by the State as directed by the Engineer and in conformance with these special provisions. Construction zone enhanced enforcement shall consist of the presence of the California Highway Patrol (CHP) within and near the limits of construction to control the movement of public traffic within the work zone. Construction zone enhanced enforcement will be required when deemed appropriate by the Engineer. The Contractor may request additional CHP support for other times and in support of other work activities. The Contractor shall bear the costs and expenses for additional CHP support. The CHP shall be compensated at an agreed rate of \$55 per hour per CHP Officer. The agreed rate shall be considered full compensation for each hour, or portion thereof, that a CHP Officer is performing construction area enhanced enforcement. There will be no markup applied to any expenses connected with CHP support. The costs and expenses for requested additional CHP support will be deducted from moneys due to the Contractor. The Engineer will make all arrangements with the CHP for scheduled and requested additional construction zone enhanced enforcement. CHP support shall be scheduled in compliance with the provisions in "Closure Requirements and Conditions" of these special provisions. The Contractor will be notified in writing of assigned CHP support when the Contractor is informed of the approval of requested closures. Cancellations to previously approved closures scheduled to include construction zone enhancement enforcement shall be submitted in writing to the Engineer at least 36 hours prior to the time when the closure is to be in place. Written notices of cancellation for a closure shall be delivered to the Engineer between the hours of 7:00 a.m. and 3:00 p.m.,
Monday through Friday, excluding designated legal holidays. Cancellations with less than the 36-hour written notice may result in charges from the CHP. The Contractor shall bear any costs and expenses resulting from cancellations with less than the 36 hour written notice, except cancellations due to weather or circumstances beyond the control of the Contractor, as determined by the Engineer. The CHP shall be compensated not less than \$50.00 per hour and no greater than 4 hours of overtime pay per CHP Officer scheduled to participate in the construction zone enhancement enforcement that is cancelled. The costs and expenses incurred for late cancellations will be deducted from moneys due or that may become due the Contractor. The presence of the California Highway Patrol will not relieve the Contractor of responsibility of providing for the safety of the public in conformance with the requirements in Section 7-1.09, "Public Safety," nor relieve the Contractor from the responsibility for damage in conformance with the requirements in Section 7-1.12, "Responsibility for Damage," of the Standard Specifications. ### 10-1.14 TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE A traffic control system shall consist of closing traffic lanes in conformance with the details shown on the plans, the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications, the provisions under "Maintaining Traffic" and "Construction Area Signs" of these special provisions, and these special provisions. The provisions in this section will not relieve the Contractor from the responsibility to provide additional devices or take measures as may be necessary to comply with the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications. During traffic stripe operations and pavement marker placement operations using bituminous adhesive, traffic shall be controlled, at the option of the Contractor, with either stationary or moving lane closures. During other operations, traffic shall be controlled with stationary lane closures. Attention is directed to the provisions in Section 84-1.04, "Protection From Damage," and Section 85-1.06, "Placement," of the Standard Specifications. If components in the traffic control system are displaced or cease to operate or function as specified, from any cause, during the progress of the work, the Contractor shall immediately repair the components to the original condition or replace the components and shall restore the components to the original location. ## STATIONARY LANE CLOSURE When lane closures are made for work periods only, at the end of each work period, all components of the traffic control system, except portable delineators placed along open trenches or excavation adjacent to the traveled way, shall be removed from the traveled way and shoulder. If the Contractor so elects, the components may be stored at selected central locations designated by the Engineer within the limits of the highway right of way. One-way traffic shall be controlled through the project in conformance with the plan entitled "Traffic Control System for Lane Closure on Two Lane Conventional Highways" and these special provisions. ### **MOVING LANE CLOSURE** Flashing arrow signs used in moving lane closures shall be truck-mounted. Flashing arrow signs shall be in the caution display mode when used on 2-lane highways. Changeable message signs used in moving lane closure operations shall conform to the provisions in Section 12-3.12, "Portable Changeable Message Signs," of the Standard Specifications, except the signs shall be truck-mounted. The full operation height of the bottom of the sign may be less than 2.1 m above the ground, but should be as high as practicable. Truck-mounted attenuators (TMA) for use in moving lane closures shall be any of the following approved models, or equal: - A. Hexfoam TMA Series 3000, Alpha 1000 TMA Series 1000 and Alpha 2001 TMA Series 2001, manufactured by Energy Absorption Systems, Inc., One East Wacker Drive, Chicago, IL 60601-2076, Telephone (312) 467-6750. - 1. Distributor (Northern): Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828, Telephone 1-800-884-8274, FAX (916) 387-9734. - Distributor (Southern): Traffic Control Service, Inc., 1881 Betmor Lane, Anaheim, CA 92805, Telephone 1-800-222-8274. - B. Cal T-001 Model 2 or Model 3, manufacturer and distributor; Hexcel Corporation, 11711 Dublin Boulevard, P.O. Box 2312, Dublin, CA 94568, Telephone (510) 828-4200. - C. Renco Rengard Model Nos. CAM 8-815 and RAM 8-815, manufacturer and distributor, Renco Inc., 1582 Pflugerville Loop Road, P.O. Box 730, Pflugerville, TX 78660-0730, Telephone 1-800-654-8182. Each TMA shall be individually identified with the manufacturer's name, address, TMA model number, and a specific serial number. The names and numbers shall each be a minimum 13 mm high and located on the left (street) side at the lower front corner. The TMA shall have a message next to the name and model number in 13 mm high letters which states, "The bottom of this TMA shall be ____ mm ± ___ mm above the ground at all points for proper impact performance." A TMA which is damaged or appears to be in poor condition shall not be used unless recertified by the manufacturer. The Engineer shall be the sole judge whether used TMAs supplied under this contract need recertification. Each unit shall be certified by the manufacturer to meet the requirements for TMAs in conformance with the standards established by the Transportation Laboratory. Approvals for new TMA designs proposed as equal to the above approved models shall be in conformance with the procedures (including crash testing) established by the Transportation Laboratory. For information regarding submittal of new designs for evaluation contact: Transportation Laboratory, 5900 Folsom Boulevard, Sacramento, CA 95819. New TMAs proposed as equal to approved TMAs or approved TMAs determined by the Engineer to need recertification shall not be used until approved or recertified by the Transportation Laboratory. ### **PAYMENT** The contract lump sum price paid for traffic control system shall include full compensation for furnishing all labor (except for flagging costs), materials (including signs), tools, equipment, and incidentals, and for doing all the work involved in placing, removing, storing, maintaining, moving to new locations, replacing, and disposing of the components of the traffic control system and for furnishing and operating the pilot car, (including driver, radios, other equipment, and labor required), as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Flagging costs will be paid for as provided in Section 12-2.02, "Flagging Costs," of the Standard Specifications. The adjustment provisions in Section 4-1.03, "Changes," of the Standard Specifications shall not apply to the item of traffic control system. Adjustments in compensation for traffic control system will be made only for increased or decreased traffic control system required by changes ordered by the Engineer and will be made on the basis of the cost of the increased or decreased traffic control necessary. The adjustment will be made on a force account basis as provided in Section 9-1.03, "Force Account Payment," of the Standard Specifications for increased work, and estimated on the same basis in the case of decreased work Traffic control system required by work which is classed as extra work, as provided in Section 4-1.03D of the Standard Specifications, will be paid for as a part of the extra work. # 10-1.15 TEMPORARY PAVEMENT DELINEATION Temporary pavement delineation shall be furnished, placed, maintained, and removed in conformance with the provisions in Section 12-3.01, "General," of the Standard Specifications and these special provisions. Nothing in these special provisions shall be construed as reducing the minimum standards specified in the Manual of Traffic Controls published by the Department or as relieving the Contractor from the responsibilities specified in Section 7-1.09, "Public Safety," of the Standard Specifications. # **GENERAL** Whenever the work causes obliteration of pavement delineation, temporary or permanent pavement delineation shall be in place prior to opening the traveled way to public traffic. Laneline or centerline pavement delineation shall be provided at all times for traveled ways open to public traffic. The Contractor shall perform the work necessary to establish the alignment of temporary pavement delineation, including required lines or marks. Surfaces to receive temporary pavement delineation shall be dry and free of dirt and loose material. Temporary pavement delineation shall not be applied over existing pavement delineation or other temporary pavement delineation. Temporary pavement delineation shall be maintained until superseded or replaced with a new pattern of temporary pavement delineation or permanent pavement delineation. Temporary pavement markers, including underlying adhesive, and removable traffic tape which are applied to the final layer of surfacing or existing pavement to remain in place or which conflicts with a subsequent or new traffic pattern for the area shall be removed when no longer required for the direction of public traffic, as determined by the Engineer. ## TEMPORARY LANELINE AND CENTERLINE DELINEATION Whenever lanelines or centerlines are obliterated and temporary pavement delineation to replace the lines is not shown on the plans, the minimum laneline and centerline delineation to be provided for that area shall be temporary pavement markers placed at longitudinal intervals of not more than 7.3 m. The temporary pavement markers shall be the same color as the laneline or centerline the pavement markers replace. Temporary pavement markers shall be, at the option of the Contractor, one of the temporary
pavement markers listed for short term day/night use (14 days or less) or long term day/night use (6 months or less) in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. The temporary pavement markers shall be placed in conformance with the manufacturer's instructions. Temporary pavement markers for long term day/night use (6 months or less) shall be cemented to the surfacing with the adhesive recommended by the manufacturer, except epoxy adhesive shall not be used to place the temporary pavement markers in areas where removal of the temporary pavement markers will be required. Temporary laneline or centerline delineation consisting entirely of temporary pavement markers listed for short term day/night use (14 days or less), shall be placed on longitudinal intervals of not more than 7.3 m and shall be used for a maximum of 14 days on lanes opened to public traffic. Prior to the end of the 14 days the permanent pavement delineation shall be placed. If the permanent pavement delineation is not placed within the 14 days, the Contractor shall replace the temporary pavement markers and provide additional temporary pavement delineation and shall bear the cost thereof. The additional temporary pavement delineation to be provided shall be equivalent to the pattern specified for the permanent pavement delineation for the area, as determined by the Engineer. Where "no passing" centerline pavement delineation is obliterated, the following "no passing" zone signing shall be installed prior to opening the lanes to public traffic. C18 (ROAD CONSTRUCTION AHEAD) or C23 (ROAD WORK AHEAD) signs shall be installed from 300 m to 600 m ahead of "no passing" zones. R63 (DO NOT PASS) signs shall be installed at the beginning and at every 600-m interval within "no passing" zones. For continuous zones longer than 3 km, W71 (NEXT ____ MILES) signs shall be installed beneath the C18 or C23 signs installed ahead of "no passing" zones. R64 (PASS WITH CARE) signs shall be installed at the end of "no passing" zones. The exact location of "no passing" zone signing will be as determined by the Engineer and shall be maintained in place until permanent "no passing" centerline pavement delineation has been applied. The signing for "no passing" zones, shall be removed when no longer required for the direction of public traffic. The signing for "no passing" zones shall conform to the provisions in "Construction Area Signs" of these special provisions, except for payment. Full compensation for furnishing, placing, maintaining, and removing the temporary pavement markers (including underlying adhesive, layout (dribble) lines to establish alignment of temporary pavement markers or used for temporary laneline and centerline delineation and signing specified for "no passing" zones) for those areas where temporary laneline and centerline delineation is not shown on the plans and for providing equivalent patterns of permanent traffic lines for those areas when required, shall be considered as included in the contract prices paid for the items of work that obliterated the laneline and centerline pavement delineation and no separate payment will be made therefor. # TEMPORARY TRAFFIC STRIPE (TAPE) Temporary traffic stripe consisting of removable traffic stripe tape shall be applied at the locations shown on the plans. The temporary traffic stripe tape shall be complete in place at the location shown prior to opening the traveled way to public traffic. Removable traffic stripe tape shall be the temporary removable traffic stripe tape listed in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Removable traffic stripe tape shall be applied in conformance with the manufacturer's installation instructions and shall be rolled slowly with a rubber tired vehicle or roller to ensure complete contact with the pavement surface. Traffic stripe tape shall be applied straight on tangent alignment and on a true arc on curved alignment. Traffic stripe tape shall not be applied when the air or pavement temperature is less than 10°C, unless the installation procedures to be used are approved by the Engineer, prior to beginning installation of the tape. ## **TEMPORARY PAVEMENT MARKING (TAPE)** Temporary pavement marking consisting of removable pavement marking tape shall be applied at the locations shown on the plans. The temporary pavement marking tape shall be complete in place at the location shown, prior to opening the traveled way to public traffic. Removable pavement marking tape shall be the temporary removable type pavement marking tape listed in "Prequalified and Tested Signing and Delineation Materials" of these special provisions and shall be applied and removed in conformance with the provisions specified for applying and removing the temporary traffic stripe tape. ## MEASUREMENT AND PAYMENT Temporary traffic stripe (tape) will be measured and paid for by the meter, measured along the line of the stripe, with deductions for gaps in broken traffic stripes. Double and 200-mm temporary traffic stripes, shown on the plans as tape, will be measured as 2 temporary traffic stripes (tape). Temporary pavement marking (tape) will be measured and paid for by the square meter for actual area of the pavement marking that receives tape. The contract price paid per meter for temporary traffic stripe (tape) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in applying, maintaining and removing temporary traffic stripe tape, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.16 BARRICADE Barricades shall be furnished, placed and maintained at the locations shown on the plans, specified in the Standard Specifications or in these special provisions or where designated by the Engineer. Barricades shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Attention is directed to "Prequalified and Tested Signing and Delineation Materials" of these special provisions regarding retroreflective sheeting for barricades. Barricades shown on the plans as part of a traffic control system will be paid for as provided in "Traffic Control System for Lane Closure" of these special provisions and will not be included in the count for payment of barricades. ## 10-1.17 PORTABLE CHANGEABLE MESSAGE SIGN One portable changeable message sign for each direction of traffic shall be furnished, placed, operated, and maintained at locations designated by the Engineer in conformance with the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. All portable changeable message signs will be paid for by a lump sum basis. The contract lump sum price paid for portable changeable message sign shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in furnishing, placing, operating, maintaining, repairing, replacing, transporting from location to location, and removing the portable changeable message signs, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. # 10-1.18 MAINTAIN TEMPORARY SIGNAL SYSTEM Maintain temporary signal system shall consist of operating, maintaining, salvaging, and removing existing temporary traffic signal, lighting and flashing beacons for traffic control in conformance with the details shown on the plan entitled "Traffic Handling Plan," the provisions in "Maintaining Traffic" of these special provisions, the provisions in Section 86, "Signals, Lighting and Electrical Systems," of the Standard Specifications, and these special provisions. The provisions in this section shall not relieve the Contractor from the responsibility to provide the additional devices or take the measures as may be necessary to conform to the provisions in Section 7-1.09, "Public Safety," of the Standard Specifications. The temporary signal system will be installed under another contract prior to the start of construction. # **OPERATION** Unless otherwise directed by the Engineer, the system shall be operated on a continuous 24-hour basis except for the periods when it is necessary to control traffic by flaggers. Timing of a temporary signal system will be performed by State forces. ### MAINTAINING TEMPORARY SIGNAL SYSTEM Maintaining a temporary signal system, except the controller assembly, shall be the sole responsibility of the Contractor. If components in the temporary signal system are damaged, displaced or cease to operate or function as specified, from any cause during the progress of the work, the Contractor shall immediately repair the components to the original condition or replace the components and shall restore the components to the original location. Components shall include signs, generator, flashing beacons, and signal equipment. In the event the temporary signal system is out of operation, for any reason, the Contractor shall provide flaggers, at the Contractor's expense, to maintain traffic control until the traffic signals are returned to service. #### SALVAGING SIGNAL SYSTEM Upon completion of the work requiring traffic signals, as determined by the Engineer, components shown on the plans to be salvaged, shall be salvaged and delivered to the Cambria Maintenance Station, 3130 Highway 46, Cambria, California (805) 927-3831. Other materials and equipment shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Materials Outside the Highway Right of Way," of the Standard Specifications. Pole holes shall be backfilled. Conductors placed in
slots across paved areas as specified herein, when no longer required, shall be abandoned in place when determined by the Engineer. Direct buried conductors, installed 300 mm or more below the ground surface, and conduit may be abandoned in place. ## **PAYMENT** The contract lump sum price paid for maintain temporary signal system shall include full compensation for furnishing all labor, tools, equipment, and incidentals, and for doing all the work involved in maintaining, salvaging, and removing the temporary traffic signal, lighting, and flashing beacon system, and hauling the materials to the location specified, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ### 10-1.19 TEMPORARY RAILING Temporary railing (Type K) shall be placed as shown on the plans, as specified in the Standard Specifications or these special provisions or where ordered by the Engineer and shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Temporary railing (Type K) installed at the locations shown on the plans shall remain in place until no longer needed as determined by the Engineer. Type P marker panels shall conform to the requirements for stationary-mounted construction area signs in "Construction Area Signs" of these special provisions, except for payment. Reflectors and adhesive will not be State-furnished. Reflectors on temporary railing (Type K) shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Temporary railing (Type K) shall conform to the details shown on Standard Plan T3. Temporary railing (Type K) fabricated prior to January 1, 1993, and conforming to 1988 Standard Plan B11-30 may be used, provided the fabrication date is printed on the required Certificate of Compliance. Attention is directed to "Public Safety" and "Order of Work" of these special provisions. Temporary railing (Type K) placed in conformance with the provisions in "Public Safety" of these special provisions will be neither measured nor paid for. ## 10-1.20 CHANNELIZER Channelizers shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications and these special provisions. Channelizers shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. When no longer required for the work as determined by the Engineer, channelizers and underlying adhesive used to cement the channelizer bases to the pavement shall be removed. Removed channelizers and adhesive shall become the property of the Contractor and shall be removed from the site of work. ## 10-1.21 TEMPORARY CRASH CUSHION (ADIEM) Temporary crash cushion (ADIEM) shall be furnished, installed and maintained at each location shown on the plans, as specified in these special provisions or where designated by the Engineer. Temporary crash cushion (ADIEM) shall conform to the requirements for crash cushion ADIEM II-350 as manufactured by Trinity Industries, Inc., and shall include the items detailed for crash cushion shown on the plans. Repairing temporary crash cushion (ADIEM) damaged by public traffic will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Temporary crash cushion (ADIEM) damaged beyond repair by public traffic shall be removed and replaced immediately by the Contractor when ordered by the Engineer. Temporary crash cushion (ADIEM) replaced due to damage by public traffic will be measured and paid for as temporary crash cushion (ADIEM). At the completion of the project, temporary crash cushion (ADIEM) shall become the property of the Contractor and shall be removed from the site of the work. The successful bidder can obtain the crash cushion from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, Utah 84014, telephone 1-800-772-7976. The price quoted by the manufacturer for ADIEM II-350, FOB Centerville, Utah is \$12,000.00, not including sales tax. The above price will be firm for orders placed on or before July 31, 2003, provided delivery is accepted within 90 days after the order is placed. The Contractor shall furnish the Engineer one copy of the manufacturer's plan and parts list. The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that the crash cushion conforms to the contract plans and specifications, conforms to the prequalified design and material requirements, and was manufactured in conformance with the approved quality control program. Crash cushion shall be installed in conformance with the manufacturer's installation instructions. Surplus excavated material remaining after the crash cushion has been installed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer. Temporary crash cushion (ADIEM) will be measured by the unit as determined from actual count placed at each location The contract unit price paid for temporary crash cushion (ADIEM) shall include full compensation for furnishing all labor, materials (including anchor bolts, nuts, washers, and marker panels), tools, equipment, and incidentals, and for doing all the work involved in furnishing, installing and removing from the site of the work when no longer required (including those damaged by public traffic), the ADIEM type crash cushion, complete in place, including structure excavation, structure backfill, and disposing of surplus material, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ## 10-1.22 TEMPORARY CRASH CUSHION MODULE This work shall consist of furnishing, installing, and maintaining sand filled temporary crash cushion modules in groupings or arrays at each location shown on the plans, as specified in these special provisions or where designated by the Engineer. The grouping or array of sand filled modules shall form a complete sand filled temporary crash cushion in conformance with the details shown on the plans and these special provisions. Attention is directed to "Public Safety" of these special provisions. Whenever the work or the Contractor's operations establishes a fixed obstacle, the exposed fixed obstacle shall be protected with a sand filled temporary crash cushion. The sand filled temporary crash cushion shall be in place prior to opening the lanes adjacent to the fixed obstacle to public traffic. Sand filled temporary crash cushions shall be maintained in place at each location, including times when work is not actively in progress. Sand filled temporary crash cushions may be removed during a work period for access to the work provided that the exposed fixed obstacle is 4.6 m or more from a lane carrying public traffic and the temporary crash cushion is reset to protect the obstacle prior to the end of the work period in which the fixed obstacle was exposed. When no longer required, as determined by the Engineer, sand filled temporary crash cushions shall be removed from the site of the work. At the Contractor's option, the modules for use in sand filled temporary crash cushions shall be either Energite III Inertial Modules, Fitch Inertial Modules or TrafFix Sand Barrels manufactured after March 31, 1997, or equal: - A. Energite III and Fitch Inertial Modules, manufactured by Energy Absorption Systems, Inc., One East Wacker Drive, Chicago, IL 60601-2076. Telephone 1-312-467-6750, FAX 1-800-770-6755 - 1. Distributor (North): Traffic Control Service, Inc., 8585 Thys Court, Sacramento, CA 95828. Telephone 1-800-884-8274, FAX 1-916-387-9734 - 2. Distributor (South): Traffic Control Service, Inc., 1881 Betmor Lane, Anaheim, CA 92805. Telephone 1-800-222-8274, FAX 1-714-937-1070 - B. TrafFix Sand Barrels, manufactured by TrafFix Devices, Inc., 220 Calle Pintoresco, San Clemente, CA 92672. Telephone 1-949 361-5663, FAX 1-949 361-9205 - 1. Distributor (North): United Rentals, Inc., 1533 Berger Drive, San Jose, CA 95112. Telephone 1-408 287-4303, FAX 1-408 287-1929 - 2. Distributor (South): Statewide Safety & Sign, Inc., P.O. Box 1440, Pismo Beach, CA 93448. Telephone 1-800-559-7080, FAX 1-805 929-5786 Modules contained in each temporary crash cushion shall be of the same type at each location. The color of the modules shall be the standard yellow color, as furnished by the vendor, with black lids. The modules shall exhibit good workmanship free from structural flaws and objectionable surface defects. The modules need not be new. Good used undamaged modules conforming to color and quality of the types specified herein may be utilized. If used Fitch modules requiring a seal are furnished, the top edge of the seal shall be securely fastened to the wall of the module by a continuous strip of heavy duty tape. Modules shall be filled with sand in conformance with the manufacturer's directions, and to the sand capacity in kilograms for each module shown on the plans. Sand for filling the modules shall be clean washed concrete sand of commercial quality. At the time of placing in the modules, the sand shall contain not more than 7 percent water as determined by California Test 226. Modules damaged due to the Contractor's operations shall be repaired immediately by the Contractor at the Contractor's expense. Modules damaged beyond repair, as determined by the Engineer, due to the Contractor's operations shall be removed and replaced by the Contractor at the Contractor's expense. Temporary crash cushion modules shall be placed on movable pallets or frames conforming to the dimensions shown on the plans. The pallets or frames shall provide a
full bearing base beneath the modules. The modules and supporting pallets or frames shall not be moved by sliding or skidding along the pavement or bridge deck. A Type R or P marker panel shall be attached to the front of the crash cushion as shown on the plans, when the closest point of the crash cushion array is within 3.6 m of the traveled way. The marker panel, when required, shall be firmly fastened to the crash cushion with commercial quality hardware or by other methods determined by the Engineer. At the completion of the project, temporary crash cushion modules, sand filling, pallets or frames, and marker panels shall become the property of the Contractor and shall be removed from the site of the work. Temporary crash cushion modules shall not be installed in the permanent work. Temporary crash cushion modules placed in conformance with the provisions in "Public Safety" of these special provisions will not be measured nor paid for. ## 10-1.23 EXISTING HIGHWAY FACILITIES The work performed in connection with various existing highway facilities shall conform to the provisions in Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions. Except as otherwise provided for damaged materials in Section 15-2.04, "Salvage," of the Standard Specifications, the materials to be salvaged shall remain the property of the State, and shall be cleaned, packaged, bundled, tagged, and hauled to the Cambria Maintenance Station at 3130 Highway 46, Cambria, California (805) 927-3831 and stockpiled. The Contractor shall notify the Engineer and the Maintenance Station Supervisor, telephone (805) 927-3831 a minimum of 48 hours prior to hauling salvaged material to the Maintenance Station. Plans of the existing crib wall may be requested by fax from the Office of Structure Maintenance and Investigations, 1801 30th Street, Sacramento, California, Fax (916) 227-8357. Plans of the existing crib wall available to the Contractor are reproductions of the original contract plans with significant changes noted and working drawings and do not necessarily show normal construction tolerances and variances. Where dimensions of new construction required by this contract are dependent on the dimensions of the existing bridges, the Contractor shall verify the controlling field dimensions and shall be responsible for adjusting dimensions of the work to fit existing conditions. #### REMOVE METAL BEAM GUARD RAILING Existing metal beam guard railing, where shown on the plans to be removed, shall be removed and disposed of. Existing concrete anchors or steel foundation tubes shall be completely removed and disposed of. Full compensation for removing concrete anchors shall be considered as included in the contract price paid per meter for remove metal beam guard railing and no separate payment will be made therefor. Full compensation for removing cable anchor assemblies, terminal anchor assemblies or steel foundation tubes shall be considered as included in the contract price paid per meter for remove metal beam guard railing and no separate payment will be made therefor. # SALVAGE CONSTRUCTION AREA SIGN PANEL Construction area sign panels shown on the plans to be salvaged, shall be removed and salvaged when no longer needed as determined by the Engineer. ## SALVAGE CONCRETE BARRIER (TYPE K) Existing concrete barrier (Type K), where shown on the plans to be salvaged, shall be removed and salvaged. While in use, existing concrete barrier (Type K) shall be maintained by the Contractor as directed by the Engineer. Full compensation for maintaining concrete barrier (Type K) including lateral moves ordered by the Engineer, shall be considered as included in the contract prices paid for the various items of work involved and no additional compensation will be made therefor. Salvage concrete barrier (Type K) shall be measured and paid for by the meter, measured along the top of the barrier prior to salvaging. ### COLD PLANE ASPHALT CONCRETE PAVEMENT Existing asphalt concrete pavement shall be cold planed at the locations and to the dimensions shown on the plans. Planing asphalt concrete pavement shall be performed by the cold planing method. Planing of the asphalt concrete pavement shall not be done by the heater planing method. Cold planing machines shall be equipped with a cutter head not less than 750 mm in width and shall be operated so that no fumes or smoke will be produced. The cold planing machine shall plane the pavement without requiring the use of a heating device to soften the pavement during or prior to the planing operation. The depth, width, and shape of the cut shall be as shown on the typical cross sections or as designated by the Engineer. The final cut shall result in a uniform surface conforming to the typical cross sections. The outside lines of the planed area shall be neat and uniform. Planing asphalt concrete pavement operations shall be performed without damage to the surfacing to remain in place. Planed widths of pavement shall be continuous except for intersections at cross streets where the planing shall be carried around the corners and through the conform lines. Following planing operations, a drop-off of more than 45 mm will not be allowed between adjacent lanes open to public traffic. Where transverse joints are planed in the pavement at conform lines no drop-off shall remain between the existing pavement and the planed area when the pavement is opened to public traffic. If asphalt concrete has not been placed to the level of existing pavement before the pavement is to be opened to public traffic a temporary asphalt concrete taper shall be constructed. Asphalt concrete for temporary tapers shall be placed to the level of the existing pavement and tapered on a slope of 1:30 (Vertical: Horizontal) or flatter to the level of the planed area. Asphalt concrete for temporary tapers shall be commercial quality and may be spread and compacted by any method that will produce a smooth riding surface. Temporary asphalt concrete tapers shall be completely removed, including the removal of loose material from the underlying surface, before placing the permanent surfacing. The removed material shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Operations shall be scheduled so that not more than 7 days shall elapse between the time when transverse joints are planed in the pavement at the conform lines and the permanent surfacing is placed at the conform lines. The material planed from the roadway surface, including material deposited in existing gutters or on the adjacent traveled way, shall be removed and disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Removal operations of cold planed material shall be concurrent with planing operations and follow within 15 m of the planer, unless otherwise directed by the Engineer. Cold plane asphalt concrete pavement will be measured by the square meter. The quantity to be paid for will be the actual area of surface cold planed irrespective of the number of passes required to obtain the depth shown on the plans. The contract price paid per square meter for cold plane asphalt concrete pavement shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in cold planing asphalt concrete surfacing and disposing of planed material, including furnishing the asphalt concrete for and constructing, maintaining, removing, and disposing of temporary asphalt concrete tapers, as specified in the Standard Specifications and these special provisions and as directed by the Engineer. ### REMOVE CRIB WALL Portions of the existing crib wall shall be removed to the limits shown on the plans. Remove crib wall will be paid for on a lump sum basis. Crib wall removed shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. ### **CURED-IN-PLACE PIPE** Cured-in-place pipe shall be furnished and installed in existing culverts at the locations shown on the plans and in conformance with the details shown on the plans and these special provisions. The work shall consist of lining an existing culvert with a thermosetting resin-impregnated flexible fabric tube. The Contractor shall use one of the following installation methods: - A. Inverted installation: The tube is inverted into the culvert by use of a hydrostatic head or air pressure, or - B. Pulled-in-place installation: The tube is pulled into place using a power winch or equivalent as approved by the Engineer, then inflated by the inversion of a calibration hose, by use of a hydrostatic head, or air pressure. The resin is cured by circulating hot water, air, or introducing controlled steam within the tube. Wastewater resulting from the curing process shall not be allowed to enter the waterway and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. When cured, the finished cured-in-place pipe shall be continuous and tight fitting. Cured-in-place pipe shall comply with either ASTM F1216, "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube" or ASTM F1743, "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)," depending on the installation method used by the Contractor, and these special provisions. Attention is directed to Section 5-1.08, "Inspection,"
of the Standard Specifications. The Contractor shall notify the Engineer in writing not less than 2 working days in advance of starting impregnation procedures. Attention is directed to "Water Pollution Control" of these special provisions. The Contractor shall provide certification that all individuals performing this work have obtained authorization from the manufacturer to install the product. ### **MATERIALS** The existing culvert may be bituminous coated. The Contractor shall select a combination of materials which shall cure in the presence of a bituminous coating and result in a cured-in-place pipe complying with the following provisions. Materials shall conform to the following: # Fabric Tube The tube shall consist of one or more layers of flexible needled felt or an equivalent non-woven or woven material, or a combination of non-woven and woven materials, capable of carrying resin, withstanding installation pressures and curing temperatures, and compatible with the resin system used. The tube shall be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the tube shall have an impermeable flexible coating to contain the resin during and after fabric tube impregnation. The outer coating must facilitate monitoring of resin saturation of the fabric tube. The tube shall be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance shall be made for circumferential and longitudinal stretching during installation. The minimum tensile strength in the longitudinal and transverse directions shall be 5 MPa in accordance with ASTM D1682 test methods. # Resin The resin shall be a chemically resistant isophthalic based polyester, or a vinyl ester thermosetting resin and catalyst system, or an unsaturated, styrene-based, thermosetting resin and catalyst system, or an epoxy resin and hardener. The resin shall be compatible with the installation process. The resin shall be able to cure in the presence of water and the initiation temperature for cure shall be less than 83 degrees C. ### **Calibration Hose** Either a removable calibration hose or a permanent calibration hose may be used in the pulled-in-place installation: - A. Removable calibration hose: The removable calibration hose shall consist of an impermeable plastic, or impermeable plastic coating on flexible woven or non-woven material, or both, that do not absorb resin and are capable of being removed from the cured-in-place pipe. - B. Permanent calibration hose: The permanent calibration hose shall consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or non-woven material, or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose shall be translucent to facilitate post- installation inspection. The calibration hose shall be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Allowance shall be made for circumferential and longitudinal stretching during installation. Once inverted, the calibration hose shall become a part of the fabric tube, and once properly cured, shall bond permanently with the fabric tube. The minimum tensile strength in the longitudinal and transverse directions shall be 5 MPa in accordance with ASTM D1682 test methods. ### INSTALLATION Developing a water supply shall conform to the provisions in Section 17, "Watering," of the Standard Specifications and these special provisions. The Contractor is cautioned to make independent investigations and obtain the commitments or allocations as the Contractor deems necessary to verify the quantity of water available. The Contractor shall, at the Contractor's expense, make arrangements or obtain commitments or allocations necessary to provide water for the project. Arrangements or commitments obtained by the Department of Transportation are not part of the contract. It is expressly understood and agreed that the Department of Transportation assumes no responsibility to the Contractor whatsoever in respect to the arrangements made with the source. The Contractor shall assume all risks in connection with the use of the source and the terms upon which the use shall be made. There is no warranty or guaranty, either expressed or implied, to the quantity of water that can be obtained from the source. The Contractor shall determine the size, length, thickness, and material composition of the cured-in-place pipe and warrant its suitability for the particular application and purpose contemplated by these specifications and the plans. Samples, in reasonable size and quantity, or the identical raw materials to be used in the project, shall be supplied to the Engineer within 10 days upon written request. Also, upon the Engineer's request specimens shall be prepared utilizing identical materials, curing, and techniques which will be accepted as representative of the actual installed cured-in-place pipe. The Contractor shall divert surface drainage and groundwater flow through the construction site through new, temporary or existing culverts, pipes or hose during the project. If necessary, the Contractor shall construct and maintain temporary plastic sheet lined sandbag diversions to accumulate and direct surface or groundwater flows into conveyance facilities. If necessary, the Contractor shall provide and operate a pump or pumps in order to keep exposed soil, the roadway and adjacent property free from accumulated water. All roots, sediment and debris shall be removed from the culvert and the culvert shall be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment. Inspection of the culvert shall be performed by experienced personnel trained in location breaks and obstacles by closed-circuit television. The interior of the culvert shall be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube. Any such conditions found shall be noted and corrected. If inspections reveal an obstruction that cannot be removed by conventional pipe cleaning equipment, a point repair shall be made to uncover and remove or repair the obstruction. Obstruction removal which cannot be removed by conventional pipe cleaning equipment will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. The fabric tube shall be totally impregnated with resin and ran through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of resin used shall be sufficient to fully saturate all the voids of the fabric tube material (as well as all resin-absorbing material of the calibration hose if applicable) at nominal thickness and diameter. The volume shall be adjusted by adding between 3 to 15 percent excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the fabric tube. If the cured-in-place pipe is installed by the pulled-in-place method, the outer impermeable plastic coating of the resinimpregnated fabric tube may be perforated at the option of the Contractor according to these special provisions. After impregnation of the fabric tube, the perforation shall be made with a perforating roller device at the point of manufacture or at the job site. Perforations shall be made on both sides of the tube, and shall cover the full circumference with a spacing no less than 38.1 mm (1.5 inch) apart. Perforating slits shall be a minimum of 6.4 mm (0.25 inch) long. Installation of the resin-impregnated tube (and calibration hose, if applicable) shall be through an existing inlet, manhole, or other access point. The Contractor shall have on site an end plug prior to installation. If the cured-in-place pipe is installed by the pulled-in-place method, the resin-impregnated tube shall be pulled into place using a power winch or equivalent as approved by the Engineer. The Contractor shall ensure that the tube is not damaged during placement. No resin shall be lost by contact with existing walls of the access or culvert during installation. The resin shall not be contaminated or diluted by exposure to dirt, debris, or water. The curing temperature shall be determined by the resin catalyst system employed. The manufacturer's standards shall be closely followed during the elevated curing temperature so as not to over stress the felt fiber and cause damage or failure prior to cure. The estimated maximum and minimum pressure required to hold the tube tight against the existing conduit during the curing process shall be provided by the manufacturer and shall be increased to include consideration of external ground water, if present. The required pressure shall be maintained during the entire curing process. The minimum cure time shall be that recommended by the resin manufacturer. The operation of the heat exchanger and the re-circulation of the heated water, or steam shall be maintained continuously through the cure period. Cure shall be deemed to be completed when the exposed portions of the cured-in-place pipe are hard and sound and the remote temperature sensor indicated that the recommended exothermic temperature has been obtained. At the completion of the curing process, the Contractor shall cool the cured-in-place pipe by circulating measured amounts of cool air or water, while maintaining the internal pressure, until the internal temperature of the cured-in-place pipe is less than 38°C before relieving the internal pressure. Properties of the finished cured-in-place pipe shall be as follows: - A. The
cured-in-place pipe shall be fabricated from materials which when cured, shall be chemically resistant to withstand exposure to sewage gases containing quantities of hydrogen sulfide, carbon monoxide, methane, petroleum hydrocarbons, and saturation with moisture and dilute sulfuric acid. - B. The physical properties of the cured-in-place pipe shall have minimum test values as follows: Flexural Strength – minimum 31.0 MPa per ASTM Designation: D790. Flexural Modulus – minimum 1723.7 MPa per ASTM Designation: D790. - C. The finished cured-in-place pipe shall be sufficiently watertight to prevent both infiltration into the rehabilitated culvert and exfiltration of flows from the rehabilitated culvert. - D. The finished cured-in-place pipe shall be continuous and tight fitting over the entire length of the culvert, free of dry spots, lifts, and de-laminations, discoloration, pitting, pin holes, cracking and other deformities and shall be tailored to the exact diameter and length of the pipe to be rehabilitated. Existing connections shall be reinstated to the finished cured-in-place pipe. No excavation shall be allowed. Connections shall be performed from the interior of the pipe by a television camera and a remote control cutting device or man entry. Reinstated connections shall be a minimum of 90 percent the original connection area when entering the existing culvert. If the cured-in-place pipe does not conform to the requirements in this special provision, as determined by the Engineer, the cured-in-place pipe shall be replaced or repaired as directed by the Engineer at the Contractor's expense. A television inspection shall be made of the finished cured-in-place pipe. A copy of the tape shall be given to the Engineer prior to project acceptance of the cured-in-place pipe. Format of the videotape shall be VHS. # MEASUREMENT AND PAYMENT The length of cured-in-place pipe to be paid for will be the slope length designated by the Engineer. Cured-in-place pipe placed in excess of the length designated will not be paid for. The contract price paid per meter for cured-in-place pipe shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals and for doing all the work involved in furnishing and installing, complete in place, including controlling or diverting existing culvert flow, developing water supply, providing samples, installing temperature and pressure gauges, repairing defects (except for removal of obstructions that cannot be removed by conventional equipment and cleaners), cleaning and closed-circuit inspection of the existing culverts, as shown on the plans, and as specified in Standard Specifications and these special provisions, and as directed by the Engineer. #### 10-1.24 EARTHWORK Earthwork shall conform to the provisions in Section 19, "Earthwork," of the Standard Specifications and these special provisions. Surplus excavated material shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Where a portion of the existing surfacing is to be removed, the outline of the area to be removed shall be cut on a neat line with a power-driven saw to a minimum depth of 50 mm before removing the surfacing. Full compensation for cutting the existing surfacing shall be considered as included in the contract price paid per cubic meter for roadway excavation and no additional compensation will be allowed therefor. Reinforcement or metal attached to reinforced concrete rubble placed in embankments shall not protrude above the grading plane. Prior to placement within 0.6-m below the grading plane of embankments, reinforcement or metal shall be trimmed to no greater than 20 mm from the face of reinforced concrete rubble. Full compensation for trimming reinforcement or metal shall be considered as included in the contract prices paid per cubic meter for the types of excavation shown in the Engineer's estimate, or the contract prices paid for furnishing and placing imported borrow or embankment material, as the case may be, and no additional compensation will be allowed therefor. ### GEOCOMPOSITE DRAIN Geocomposite Drain shall conform to the details shown on the plans and the following: - A. Attention is directed to "Engineering Fabrics" under "Materials" of these special provisions. - B. Geocomposite drain shall consist of a manufactured core not less than 6.35 mm thick nor more than 50 mm thick with one or both sides covered with a layer of filter fabric that will provide a drainage void. The drain shall produce a flow rate, through the drainage void, of at least 25 liters per minute per meter of width at a hydraulic gradient of 1.0 and a minimum externally applied pressure of 168 kPa. - C. A Certificate of Compliance conforming to the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications shall be furnished for the geocomposite drain certifying that the drain produces the required flow rate and complies with these special provisions. The Certificate of Compliance shall be accompanied by a flow capability graph for the geocomposite drain showing flow rates for externally applied pressures and hydraulic gradients. The flow capability graph shall be stamped with the verification of an independent testing laboratory. - D. Filter fabric for the geocomposite drain shall conform to the provisions for fabric for underdrains in Section 88, "Engineering Fabrics," of the Standard Specifications. - E. The manufactured core shall be either a preformed grid of embossed plastic, a mat of random shapes of plastic fibers, a drainage net consisting of a uniform pattern of polymeric strands forming 2 sets of continuous flow channels, or a system of plastic pillars and interconnections forming a semirigid mat. - F. The core material and filter fabric shall be capable of maintaining the drainage void for the entire height of geocomposite drain. Filter fabric shall be integrally bonded to the side of the core material with the drainage void. Core material manufactured from impermeable plastic sheeting having nonconnecting corrugations shall be placed with the corrugations approximately perpendicular to the drainage collection system. - G. The geocomposite drain shall be installed with the drainage void and the filter fabric facing the embankment. The fabric facing the embankment side shall overlap a minimum of 75 mm at all joints and wrap around the exterior edges a minimum of 75 mm beyond the exterior edge. If additional fabric is needed to provide overlap at joints and wrap-around at edges, the added fabric shall overlap the fabric on the geocomposite drain at least 150 mm and be attached thereto. - H. Should the fabric on the geocomposite drain be torn or punctured, the damaged section shall be replaced completely or repaired by placing a piece of fabric that is large enough to cover the damaged area and provide a minimum 150-mm overlap. - I. Plastic pipe shall conform to the provisions for edge drain pipe and edge drain outlets in Section 68-3, "Edge Drains," of the Standard Specifications. - J. Treated permeable base to be placed around the slotted plastic pipe at the bottom of the geocomposite drain shall be cement treated permeable base conforming to the provisions for cement treated permeable base in Section 29, "Treated Permeable Bases," of the Standard Specifications and these special provisions. - K. The treated permeable base shall be enclosed with a high density polyethylene sheet or PVC geomembrane, not less than 250 μm thick, which is bonded with a suitable adhesive to the concrete and geocomposite drain. Surfaces to receive the polyethylene sheet shall be cleaned before applying the adhesive. The treated permeable base shall be compacted with a vibrating shoe type compactor. If structure excavation or structure backfill involved in bridges is not otherwise designated by type, and payment for the structure excavation or structure backfill has not otherwise been provided for in the Standard Specifications or these special provisions, the structure excavation or structure backfill will be paid for at the contract price per cubic meter for structure excavation (bridge) or structure backfill (bridge). # 10-1.25 SOIL NAIL WALL EARTHWORK Soil nail wall earthwork consisting of excavation, drilling holes for installation of soil nail assemblies, furnishing and installing geocomposite drains, and backfilling around these completed walls shall conform to the provisions in Section 19-3, "Structure Excavation and Backfill," of the Standard Specifications and these special provisions. Geocomposite drains shall conform to geocomposite drains provisions elsewhere in these special provisions. ### WORKING DRAWINGS The Contractor shall submit complete working drawings for earthwork for each soil nail wall to the Division of Structure Design (DSD) in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. All working drawings for wall earthwork shall be 559 mm by 864 mm in size. For initial review, 5 sets of drawings shall be submitted. After review, between 6 and 12 sets, as requested by the Engineer, shall be submitted to DSD for final approval and use during construction. Working drawings for wall earthwork shall show the State assigned designations for the contract number, structure number, full name of the structure as shown on the contract plans, and District-County-Route-Kilometer Post on each drawing and calculation sheet. The Contractor name, address, and phone number shall be shown on the working drawings. Each sheet shall be numbered in the lower right hand corner. Working drawings for wall earthwork shall contain all information required for the construction and quality control of the earthwork, including the following: - A. The proposed
schedule and detailed construction sequence. Construction sequence shall include measures to ensure wall and slope stability during all stages of wall construction including provisions for discontinuous rows of nails. - B. Methods of excavation to the staged lifts indicated and excavation equipment types. - C. Temporary shoring plans. - D. Drilling methods and equipment including proposed drill hole size and any variation of these along the alignments. - E. Information on space requirements for installation equipment. - F. A detailed construction dewatering plan addressing all elements necessary to divert, control and dispose of surface water. A supplement to the working drawings shall include the following: - A. Independently checked calculations for wall and slope stability during various stages of wall construction including geotechnical assessment of information provided by the Department for this contract. At the Contractor's option, the Contractor may conduct additional geotechnical investigation for the purpose of developing wall earthwork working drawings. - B. Information on provisions for working in the proximity of underground facilities. The working drawings and supplement shall be stamped and signed by an engineer who is registered as a Civil Engineer in the State of California. The Contractor shall allow the Engineer 4 weeks to review the working drawing submittal after a complete set has been received. Should the Engineer fail to review the complete working drawing submittal within the time specified and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the wall earthwork working drawing submittal, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. ## **EXCAVATION** Care shall be taken during excavation for soil nail walls to prevent disturbing the natural foundation materials behind the face of excavation. During initial mass grading, the Contractor shall not excavate the full wall height to the wall alignment as shown on the plans, but the Contractor shall maintain a working berm of native material in front of the wall to serve as a work bench for the drill equipment. The working berm shall extend out from the wall a minimum distance of 5 m and shall be cut down from that point at the slope shown on the approved wall earthwork working drawings. The original ground beyond the wall alignment for the back or ends of the wall as shown on the plans shall not be over excavated. Any such over excavation shall be restored by the Contractor, at the Contractor's expense, using methods and materials approved in writing by the Engineer. Soil stabilization methods or temporary backing or lagging placed behind the excavation face may be required to prevent disturbing the natural foundation materials. Excavation for walls shall be limited to that area which can be nailed and covered with shotcrete during the same work shift in which the excavation is done. Subsequent excavation shall not be made within 3 m of previously nailed and covered portions of the wall until those nailed and covered portions are structurally complete. A portion of the wall will be considered structurally complete when the soil nail assemblies have been installed, the shotcrete cover has set, specified testing has been completed for that portion of the wall, and the test results have been furnished to the Engineer. Excavation to the final wall alignment for the full wall height shall incorporate a working berm which shall be constructed from the top down in a staged lift sequence as shown on the approved wall earthwork working drawings. The ground level in front of the wall face shall not be excavated more than one meter below the level of the row of soil nails to be installed in that same lift. In addition to the working berm described above, the Contractor shall maintain a stabilizing berm to support the excavation face during nail installation. The stabilizing berm shall extend horizontally from the bottom of the shotcrete a minimum distance of 0.3-m and shall be cut down from that point at a slope as shown on the approved wall earthwork working drawings. After soil nails are complete in place for a given lift, the stabilizing berm shall be removed during excavation to the final wall alignment. The complete excavated face shall be cleaned of all loose materials, mud, rebound, and other materials that could prevent or reduce shotcrete bond to the excavated face and soil nails. Temporary backing or lagging for excavation at walls may be left in place if approved in writing by the Engineer. There shall be no voids behind wall temporary backing or lagging that is left in place. Fillers used to eliminate voids between the excavation face and temporary backing or lagging shall be dimensionally stable, non-deteriorating material capable of supporting the earth pressures in both water saturated and dry conditions. Timber backing or lagging at walls which is to remain in place and is greater than one inch total thickness shall be pressure treated with wood preservative for soil and fresh water use in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications. Wood preservative shall be one of the following: creosote, creosote-coal tar solution, pentachlorophenol, copper naphthenate, ammonia copper arsenate, ammoniacal copper zinc arsenate, acid copper chromate, or chromated copper arsenate. The Contractor shall remove all cobbles, boulders or portions of boulders, rubble, or debris which are encountered at the final wall alignment during wall face excavation and which protrude from the excavated face more than 50 mm into the design shotcrete thickness as shown on the plans. Such over excavation shall be backfilled with shotcrete. The Contractor shall immediately notify the Engineer of the occurrence of raveling or local instability of the final wall face excavation due to the presence of groundwater, soil conditions, equipment vibration, or other causes. Unstable areas shall be temporarily stabilized by means of buttressing the exposed excavation face with an earth berm or other methods approved in writing by the Engineer. Construction of the wall in unstable areas shall be suspended until remedial measures, submitted by the Contractor, and approved by the Engineer, have been taken. The Contractor shall protect installed nails during excavation and subsequent operations. Any nails damaged during construction shall be replaced by the Contractor, at the Contractor's expense. ## MEASUREMENT AND PAYMENT Excavation for soil nail wall construction will be measured and paid for as structure excavation (soil nail wall). Full compensation for working drawings and supplements, and for furnishing, constructing and removing shoring, working berms, and stabilizing berms, if required, for soil nail wall construction shall be considered as included in the contract price paid per cubic meter for structure excavation (soil nail wall) and no additional compensation will be allowed therefor Full compensation for shotcrete used to fill voids created by the removal of cobbles and boulders or other obstructions shall be considered as included in the contract price paid per cubic meter for shotcrete and no additional compensation will be allowed therefor. Full compensation for furnishing and installing geocomposite drains for the soil nail wall construction, complete in place, including plastic drain pipe, shall be considered as included in the contract price paid per cubic meter for structure excavation (soil nail wall) and no additional compensation will be allowed therefor. # 10-1.26 SOIL NAIL ASSEMBLY Soil nail assemblies and test soil nail assemblies, consisting of drilling holes in natural foundation materials, installing and grouting steel bars in drilled holes, anchorage systems, and testing of test soil nail assemblies, shall conform to the details shown on the plans and the provisions of the Standard Specifications and these special provisions. Foundation recommendations are included in the "Information Handout" available to the Contractor in conformance with the provisions in Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications. Attention is directed to "Soil Nail Wall Earthwork," of these special provisions. ### WORKING DRAWINGS The Contractor shall submit a complete working drawing submittal for soil nail assemblies to the Division of Structure Design (DSD) in conformance with the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. All working drawings for soil nail assemblies shall be 559 mm by 864 mm in size. For initial review, 5 sets of drawings shall be submitted. After review, between 6 and 12 sets, as requested by the Engineer, shall be submitted to DSD for final approval and use during construction. Working drawing submittals shall be submitted sufficiently in advance of the start of the work to allow time for review by the Engineer and correction by the Contractor, without delaying the work. Working drawing submittals for soil nail assemblies shall show the State assigned designations for the contract number, structure number, full name of the structure as shown on the contract plans, and District-County-Route-kilometer post on each drawing and calculation sheet. The Contractor's name, address, and phone and FAX numbers shall also be shown on the working drawings. Each working drawing sheet shall be numbered in the lower right hand corner of the sheet. Working drawings for soil nail assemblies shall contain all information required for the construction and quality control of the soil nail wall, including the following: -
A. The proposed schedule and detailed construction sequence of the installation and grouting of soil nails, application of shotcrete and construction of cast-in-place reinforced concrete. - B. Complete details and specifications of the soil nail and test soil nail, including encapsulation materials and method of grouting the encapsulation, anchorage system, and type of packers or other appropriate devices to be used to ensure partial length grouting of test soil nails. - C. Grout mix designs and procedures involved in testing grout. - D. Grout placement procedures and equipment including minimum required cure time. - E. Details of the equipment proposed for testing soil nails including jacking frame and appurtenant bracing, and the method and equipment for determining any displacement of the test soil nail relative to the grout during applications of test loads. - F. Information on space requirements for installation equipment. - G. Drilling methods and equipment. The working drawing submittal shall be stamped and signed by an engineer who is registered as a Civil Engineer in the State of California. The Contractor shall allow the Engineer 4 weeks to review the soil nail working drawing submittal after a complete set has been received. No soil nails shall be fabricated and installed until the Engineer has approved, in writing, the working drawing submittal for soil nail assemblies. Should the Engineer fail to review the complete working drawing submittal within the time specified, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the soil nail working drawing submittal, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. ## **MATERIALS** The materials specified below shall be used for construction of soil nail assemblies and test soil nail assemblies. ### Soil Nail Soil nails shall conform to the provisions for bar reinforcement in Section 52, "Reinforcement," of the Standard Specifications. When Grade 420 soil nails are shown on the plans, the soil nails shall also conform to the requirements in ASTM Designation: A 615/A 615M or A706/A706M. When Grade 520 soil nails are shown on the plans, the soil nails shall also conform to the requirements in ASTM Designation: A 615/A 615M. The soil nail shall be either a reinforcing bar encapsulated full length in a grouted corrugated plastic sheathing or an epoxy coated reinforcing bar partially encapsulated in a grouted corrugated plastic sheathing. The bar shall be centered in the sheathing and the space between the sheathing and the bar shall be filled with grout. The epoxy coating shall have a minimum thickness of 305 µm. Soil nail assemblies shall be lengthened or additional soil nail assemblies shall be installed when ordered by the Engineer. The lengthening or addition of soil nail assemblies, when ordered by the Engineer, will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Soil nails shall have a minimum length of 150 mm of thread on the anchorage end. Threading may be continuous spiral deformed ribbing provided by the bar deformations or may be cut into a reinforcing bar. If threads are cut into a reinforcing bar, the bar size shall be the next larger bar designation number from that shown on the plans and coarse threads shall be used. The epoxy coating at the anchorage end of epoxy-coated bars may be omitted for a maximum length of 150 mm. Metal surfaces of assembled splices of epoxy-coated bars shall be epoxy-coated. Corrugated plastic sheathing shall be either polyvinyl chloride (PVC) or high density polyethylene (HDPE). The minimum sheathing wall thickness shall be 1.0 mm. HDPE shall have a density between 0.940 and 0.960-gram/cm³ when measured in conformance with the requirements in ASTM Designation: D 792, A-2. The sheathing shall have sufficient strength to prevent damage during construction operations, shall be watertight, chemically stable without embrittlement or softening, and nonreactive with concrete. Splicing of soil nails shall be made only at the locations shown on the plans or at ends of soil nails which the Engineer has ordered to be lengthened. ### **Test Soil Nail** Test soil nails shall conform to the provisions for bar reinforcement in Section 52, "Reinforcement," of the Standard Specifications, and shall be of a size and grade determined by the Contractor. Test soil nail assemblies shall be lengthened or additional test soil nail assemblies shall be installed when ordered by the Engineer. The lengthening or addition of test soil nail assemblies, when ordered by the Engineer, will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. Test soil nails need not be epoxy coated or encapsulated in grouted plastic sheathing. Splicing of test soil nails shall be made only at locations outside of the bonded length. # **Anchorage System** Anchorage for soil nails shall conform to the details shown on the plans and the provisions in Section 75-1.02, "Miscellaneous Iron and Steel," of the Standard Specifications except that nuts, washers, wedges, and bearing plates to be fully encased in concrete, grout, or shotcrete need not be galvanized. Concrete anchors on the bearing plates shall conform to the provisions for stud connectors in Section 55-2, "Materials," of the Standard Specifications. The ultimate strength of the soil nail anchorage shall be at least the value shown below for the size of the soil nail bar shown on the plans. | BAR SIZE | ANCHORAGE ULTIMATE STRENGTH (kilonewtons) | | | | | | | |----------|---|-----------|--|--|--|--|--| | | Grade 420 | Grade 520 | | | | | | | No. 16 | 123 | 137 | | | | | | | No. 19 | 178 | 198 | | | | | | | No. 22 | 240 | 267 | | | | | | | No. 25 | 314 | 350 | | | | | | | No. 29 | 401 | 446 | | | | | | | No. 32 | 508 | 565 | | | | | | ### Grout Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. California Test 541 will not be required nor will the grout be required to pass through a screen with a 1.80-mm maximum clear opening prior to being introduced into the grout pump. Fine aggregate may be added to the grout mixture of portland cement and water in drilled holes 150 mm or greater in diameter, but only to the extent that the cement content of the grout is not less than 600 kilograms per cubic meter of grout. Fine aggregate, if used, shall conform to the provisions in Section 90-2, "Materials," and Section 90-3, "Aggregate Gradings," of the Standard Specifications. Grout with fine aggregate shall have a nominal penetration equal to or greater than 90 mm when measured in conformance with California Test 533, and shall have an air content of equal to or less than 2 percent when measured in conformance with California Test 504. Air entraining admixtures shall not be used for grout with fine aggregate. The consistency of grout with fine aggregate shall be verified prior to use by producing a batch to be tested. The test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during the placement of grout in the soil nails. Grout for the test batch shall be placed in an excavated hole or suitable container of adequate size to allow testing in conformance with California Test 533. The test batch shall demonstrate that the proposed grout mix achieves the specified nominal penetration. Upon completion of the testing, the grout shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. ## CONSTRUCTION Soil nails shall be installed in drilled holes in an expeditious manner so that caving or deterioration of the drilled hole does not occur. No portion of the drilled hole shall be left open for more than 60 minutes prior to soil nail placement and grouting unless otherwise approved by the Engineer. ## **Drilling** Drilling equipment shall be designed to drill straight and clean holes. The drilling method and the size and capability of the drilling equipment shall be as approved in the working drawings. Drill rigs shall have the capability of anchorage installation and grout placement through the use of drill casing or hollow-stem augers. When caving conditions are anticipated, sufficient casing and auger lengths shall be available on site to maintain uninterrupted installation of anchors. Where hard drilling conditions such as rock, cobbles, boulders, or obstructions are anticipated, a down hole pneumatic hammer drill rig and drill bit shall be available on site to drill holes for soil nail assemblies. Drilled holes for walls shall not extend beyond the right-of-way or easement limits as shown on the plans or as specified in these special provisions. Holes shall be drilled in the natural foundation materials. Holes for test soil nail assemblies shall be of the same diameter as those for the production soil nail assemblies they represent. Holes shall be cleaned to remove material resulting from the drilling operations and to remove any other material that would impair the strength of the soil nail assemblies or test soil nail assemblies. Foreign material dislodged or drawn into the holes during construction of the assemblies shall be removed. Water for cleaning holes shall not be used, unless full hole length hollow-stem augers or casing is maintained in the same hole during cleaning and soil nail assembly installation. Soil nail assemblies and test soil nail assemblies shall not be installed in the drilled holes until the holes have been inspected by the Engineer. # **Installing Soil Nails and Test Soil Nails** Soil nails and test
soil nails shall be installed in the drilled holes using centralizers. Centralizers shall adequately support the bar in the center of the drilled hole and shall be spaced at a maximum of 1.5 m on center along the length of the bar, and 0.5-m from the end of the bar. Where the soil nail cannot be completely inserted, the Contractor shall remove the bar and clean or redrill the hole to permit unobstructed installation. Partially installed bars shall not be driven or forced into the drilled hole and will be rejected. When open-hole drilling methods are being used, the Contractor shall have hole cleaning tools on-site suitable for cleaning drilled holes along their full length just prior to bar insertion and grouting. ### Grouting The length of drilled hole shall be verified and recorded by the Contractor before grouting. Grout shall be injected at the low end of the drilled hole and shall fill the drilled hole with a dense grout free of voids or inclusion of foreign material. Cold joints shall not be used in grout placement. Soil nails shall be grouted full length. Only the bonded length of test soil nails shall be initially grouted. Initial grouting shall be confined to the bonded length by packers or other approved devices. For test soil nails, grouting of the remainder of the drilled hole shall not be done until pullout tests have been completed and approved by the Engineer. After placing the grout for soil nails and test soil nails, they shall remain undisturbed for the cure time stated in the approved soil nail working drawings. # **Securing Soil Nails** Any remaining void at the exterior end of the drilled hole for a soil nail assembly shall be filled with shotcrete and the soil nail secured at the face of the shotcrete. The steel bearing plate shall be seated with full bearing on the shotcrete surface and the nut for the soil nail shall be hand tightened before the initial set of the shotcrete. The nut shall be made wrench tight after the shotcrete has set for 24 hours, unless a shorter time is approved by the Engineer. # **Securing Test Soil Nails** Testing shall be performed against a temporary bearing yoke which bears directly on the shotcrete facing. Test loads transmitted through the temporary bearing yoke shall not fracture the shotcrete or cause displacement or sloughing of the soil surrounding the drilled hole. No part of the yoke shall bear within 150 mm of the edge of blockout. Test soil nails shall be removed to behind the front face of the shotcrete after testing has been completed. The remaining length of void in the drilled hole shall be grouted and the blockout in the shotcrete facing filled with either grout or shotcrete. ## **TESTING** Test soil nail assemblies shall be pullout tested by the Contractor in the presence of the Engineer. A pullout test shall consist of incrementally loading the assembly until one of the following conditions has been reached: 1) the maximum test load, 2) the point where the movement of the test soil nail continues without an increase in the load, or 3) the point when the soil nail has displaced 50 mm. This load at which this condition is reached shall be recorded as part of the test data. The Contractor shall monitor and record displacement of the test soil nail relative to the grout during application of the test load. Applied test loads shall be determined by using either a calibrated pressure gage or a load cell. Movements of the end of the soil nail, relative to an independent fixed reference point, shall be measured and recorded to the nearest $25 \mu m$ at each increment of load, including the ending alignment load, during the load tests. The pressure gage shall have an accurately reading dial at least 150 mm in diameter and each jack and its gage shall be calibrated as a unit with the cylinder extension in the approximate position that it will have at final jacking force, and shall be accompanied by a certified calibration chart. The load cell shall be calibrated and shall be provided with an indicator by means of which the test load in the soil nail may be determined. The range of the load cell shall be such that the lower 10 percent of the manufacturer's rated capacity will not be used in determining the jacking force. The test load may be verified by State forces with either State-furnished load cells or pressure cells, or with State-furnished Vibra-Tension equipment operated in conformance with the requirements of California Test 677. The Contractor shall provide sufficient labor, equipment, and material to install and support such testing equipment at the soil nails and to remove the testing equipment after the testing is complete, as ordered by the Engineer. The pullout test procedures shall conform to the following: A. The pullout test shall be conducted by measuring and recording the test load applied to the test soil nail and the test soil nail end movement at each load listed in the following loading schedule. ### PULLOUT TEST LOADING SCHEDULE ``` AL 0.10M 0.20M 0.30M 0.40M 0.50M 0.60M 0.70M (PULLOUT TEST LOAD) 0.80M 0.90M 1.00M AL ``` ## $(M = MAXIMUM TEST LOAD (kN) = 0.0141\sigma_bD)$ Where σ_b =Ultimate bond stress between grout and drilled hole as shown on the plans, in kPa; and D=actual drilled hole diameter, in millimeters. ``` (AL = ALIGNMENT LOAD = 0.1M) ``` - B. Each increment of load shall be applied in less than one minute and held for at least one minute but not more than 2 minutes, except that load equal to 0.70M shall be held for 10 minutes. During the 10-minute load hold, the movement of the end of the soil nail shall be measured at 1, 2, 3, 4, 5, 6, and 10 minutes. The observation period for the 10-minute load hold shall start when the pump begins to apply the increment of load from 0.60M to 0.70M. If the movement measured between one minute and 10 minutes is less than 2 mm, the load shall continue to be increased incrementally to 1.0M, then reduced to the ending alignment load. - C. If the load of 0.70M cannot be maintained for 10 minutes with 2 mm or less movement, the 0.70M load shall be maintained for an additional 50 minutes. Total movement shall be measured at 15, 20, 25, 30, 45, and 60 minutes. After the 60 minute movement measurement, the load shall continue to be increased incrementally to 1.0M, then be reduced to the ending alignment load. - D. The soil nail shall be unloaded only after completion of the test. If a test soil nail fails to achieve the load equal to 0.70M, that soil nail shall be extracted when requested by the Engineer. Full compensation for extracting test soil nails shall be considered as included in the contract price paid per meter for soil nail assembly, and no separate payment will be made therefor. The Contractor shall furnish to the Engineer complete test results for each soil nail assembly tested. Data for each test shall list key personnel, test loading equipment, test soil nail location, hole diameter and depth, bonded length, type of soil, method of drilling, and amount of ground water encountered within the bond length. Test data shall also include the dates and times of drilling, test soil nail installation, grouting, and testing. The test load and amount of displacement shall be included in the test data when any displacement of the test soil nail relative to the grout occurs during application of the test load. ### **MEASUREMENT** Soil nail assembly and test soil nail assembly will be measured and paid for by the meter. The length to be paid for will be the length of soil nail assembly or test soil nail assembly measured along the bar centerline from the back face of shotcrete to the tip end shown on the plans or ordered in writing by the Engineer. ### **PAYMENT** The contract price paid per meter for soil nail assembly shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing the soil nail assemblies, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. Test soil nail assemblies will be paid for as soil nail assembly. Full compensation for testing of the test soil nail assemblies shown on the plans shall be considered as included in the contract price paid per meter for soil nail assembly, and no separate payment will be made therefor. Full compensation for repair of all damage to existing structures, restoration of grade in subsided areas, and all other damage done by drilling shall be considered as included in the contract price paid per meter for soil nail assembly, and no additional compensation will be allowed therefor. Full compensation for furnishing, installing, and removing casing shall be considered as included in the contract price paid per meter for soil nail assembly, and no additional compensation will be allowed therefor. The quantities of trial batch grout will not be included in any contract item of work, and full compensation for furnishing, producing, and disposing of trial batches shall be considered as included in the contract price paid per meter for soil nail assembly, and no additional compensation will be allowed therefor. # 10-1.27 SHOULDER BACKING This work shall consist of constructing shoulder backing adjacent to the edge of new surfacing in conformance with the details shown on the plans and these special provisions. Material for shoulder backing shall be imported material or material processed from reclaimed portland cement concrete, lean concrete base, cement treated base, or a combination of any of these materials, conforming to the following grading and quality requirements: | Gradin | g Requirements | Quality Requirements | | | | | | | |-------------|--------------------|------------------------------|-----------------|---------------|--|--|--|--| | Sieve Sizes | Percentage Passing | Specification | California Test | Requirement | | | | | | 50-mm | 100
| Sand Equivalent | 217 | 10 min30 max. | | | | | | 25-mm | 75 - 100 | Resistance (R-value) | 301 | 50 min. | | | | | | 4.75-mm | 40 - 60 | Percentage Crushed Particles | 205 | 75% min. | | | | | | 600-μm | 12 - 35 | Durability Index | 229 | 20 min. | | | | | | 75-μm | 5 - 20 | | | | | | | | At the option of the Contractor, aggregate for shoulder backing may consist of material processed from reclaimed asphalt concrete conforming to the following grading and quality requirements. | Grading | g Requirements | Quality Requirements | | | | | |-------------|--------------------|------------------------------|-----------------|-------------|--|--| | Sieve Sizes | Percentage Passing | Specification | California Test | Requirement | | | | 50-mm | 100 | Resistance (R-value) | 301 | 50 min. | | | | 19-mm | 70 - 100 | Percentage Crushed Particles | 205 | 75% min. | | | | 4.75-mm | 30 - 80 | Durability Index | 229 | 20 min. | | | Coarse aggregate consisting of material retained on the 4.75 mm sieve, shall consist of material of which at least 75 percent by mass shall be crushed particles with a minimum of two fractured faces, as determined in conformance with the requirements in California Test 205. Shoulder backing material shall have a minimum dry density of 2160 kg/m³. Shoulder backing material shall not be treated with lime, cement or other chemical mixtures. Shoulder backing material consisting of reclaimed asphalt concrete, shall not be placed within 30 horizontal meters of any culvert, watercourse, or bridge within the project limits. The areas where shoulder backing is to be constructed shall be cleared of weeds, grass, and debris. Removed weeds grass and debris shall be disposed of in conformance with the requirements in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Prior to placement of shoulder backing material, basement material shall be scarified to a minimum depth of 75 mm. Immediately prior to placement of shoulder backing material, scarified material shall be watered. Shoulder backing material shall be placed, watered, and rolled a minimum of two passes with a steel tired roller weighing not less than 7.2 tonnes to form a smooth, compacted surface. Watering shall conform to the provisions in Section 17, "Watering," of the Standard Specifications. Shoulder backing material shall not be deposited on new surfacing prior to placing the material in the final position, nor shall the material be deposited onto new surfacing during mixing, watering, and blading operations. Shoulder backing construction shall be completed along the edges of any portion of new surfacing within 5 days after completion of that portion of the new surfacing. Prior to opening a lane adjacent to uncompleted shoulder backing to uncontrolled public traffic, the Contractor shall furnish, place, and maintain portable delineators and C31 (Low Shoulder) signs off of and adjacent to the new surfacing. Portable delineators shall be placed at the beginning and along the drop-off of the edge of pavement, in the direction of travel, at successive maximum intervals of 150 meters on tangents and 60 meters on curves. C31 signs shall be placed at the beginning and along the drop-off at successive maximum intervals of 600 meters. The portable delineators and C31 signs shall be maintained in place at each location until the shoulder backing is completed at that location. Portable delineators and signs shall conform to the provisions in Section 12, "Construction Area Traffic Control Devices," of the Standard Specifications, except the signs may be set on temporary portable supports or on barricades. Quantities of imported material (shoulder backing) will be measured in the vehicle by the cubic meter in conformance with the provisions in Section 9-1.01, "Measurement of Quantities," of the Standard Specifications. The contract price paid per cubic meter for imported material (shoulder backing) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in constructing shoulder backing, complete in place, including furnishing, placing, maintaining, and removing portable delineators, C31 signs, and temporary supports or barricades for the signs, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ### 10-1.28 FOG SEAL COAT Fog seal coat shall conform to the provisions in Section 37-1, "Seal Coats," of the Standard Specifications and these special provisions. Asphaltic emulsion shall be either SS1h or CSS1h grade. Fog seal coat shall be applied to new asphalt concrete dike in two applications, each at a rate of 0.55 liter per square meter. ### 10-1.29 EROSION CONTROL (BLANKET) Erosion control (blanket) shall conform to the details shown on the plans, the provisions in Section 20-3, "Erosion Control," of the Standard Specifications and these special provisions. Erosion control (blanket) work shall consist of applying seed and compost and installing erosion control blanket to embankment slopes, excavation slopes and other areas designated by the Engineer. ### MATERIALS Materials shall conform to the provisions in Section 20-2, "Materials," of the Standard Specifications and these special provisions. ### Seed Seed shall conform to the provisions in Section 20-2.10, "Seed," of the Standard Specifications. Individual seed species shall be measured and mixed in the presence of the Engineer. Seed not required to be labeled under the California Food and Agricultural Code shall be tested for purity and germination by a seed laboratory certified by the Association of Official Seed Analysts or by a seed technologist certified by the Society of Commercial Seed Technologists. Seed shall have been tested for purity and germination not more than one year prior to application of seed. Results from testing seed for purity and germination shall be furnished to the Engineer prior to applying seed. Seed shall be delivered to the job site in unopened separate containers with the seed tag attached. Containers without a seed tag will not be accepted. A sample of approximately 10 g of seed will be taken from each seed container by the Engineer. #### Seed Seed shall consist of the following: ### **SEED** | Botanical Name | Percent Germination | Kilograms Pure Live Seed Per Hectare | |--|---------------------|--------------------------------------| | (Common Name) | (Minimum) | (Slope Measurement) | | Elymus glaucus "Santa Cruz' (Blue Wildrye) | 50 | 15 | | Melica imperfecta | 40 | | | (Coastrange Melic) | | 10 | ## **Erosion Control Blanket** Erosion control blanket shall consist of jute mesh secured in place with wire staples and shall conform to the following: - A. Jute mesh shall be new and shall be of a uniform, open, plain-weave mesh. The mesh shall be made from unbleached single jute yarn. The yarn shall be of loosely twisted construction and shall not vary in thickness by more than half its normal diameter. Jute mesh shall be furnished in rolled strips and shall conform to the following provisions: - 1. Width 1200 mm, with a tolerance of \pm 25 mm. - 2. Warp ends 78, minimum, per width. - 3. Weft ends 44, minimum, per meter. - 4. Mass 0.57 to 0.63-kg/m. - B. Staples for erosion control blankets shall be made of 11-gage minimum steel wire and shall be U-shaped with 150-mm legs and 25-mm crown or 200-mm legs and 50-mm crown. # Compost Compost shall be derived from green material consisting of chipped, shredded or ground vegetation or clean processed recycled wood products or a Class A, exceptional quality biosolids composts, as required by the United States Environmental Protection Agency (EPA), 40 CFR, Part 503c regulations or a combination of green material and biosolids compost. The compost shall be processed or completed to reduce weed seeds, pathogens and deleterious material, and shall not contain paint, petroleum products, herbicides, fungicides or other chemical residues that would be harmful to plant or animal life. Other deleterious material, plastic, glass, metal or rocks shall not exceed 0.1 percent by weight or volume. A minimum internal temperature of 57°C shall be maintained for at least 15 continuous days during the composting process. The compost shall be thoroughly turned a minimum of 5 times during the composting process and shall go through a minimum 90-day curing period after the 15-day thermophilic compost process has been completed. Compost shall be screened through a maximum 9.5-mm screen. The moisture content of the compost shall not exceed 35 percent. Compost products with a higher moisture content may be used provided the weight of the compost is increased to equal the compost with a moisture content of 35 percent. Moist samples of compost on an as received basis shall be dried in an oven at a temperature between 105°C and 115°C until a constant dry weight of the sample is achieved. The percentage of moisture will be determined by dividing the dry weight of the sample by the moist weight of the sample and then multiplying by 100. Compost will be tested for maturity and stability with a Solvita test kit. The compost shall measure a minimum of 6 on the maturity and stability scale. ### APPLICATION Erosion control (blanket) materials shall be placed in 3 separate applications as follows: A. The first application shall consist of applying jute mesh to the finished slopes. Longitudinal seams of the jute mesh shall be at right angles to the slope contour lines. The installed mesh shall fit the soil surface contour and shall be held in place by steel wire staples driven vertically into the soil at approximately 600-mm spacing. Jute mesh strips shall overlap the adjacent jute mesh a minimum of 150 mm. Top and bottom ends of strips shall be buried in the soil a minimum of 150 mm. B. The second application
shall consist of applying seed at the following rate: Seed shall be applied at the rate indicated in the following table. If hydro-seeding equipment is used to apply seed, the mixture shall be applied within 30 minutes after the seed has been added to the mixture. | Material | Kilograms Per Hectare (Slope Measurement) | |----------|---| | Seed | 25 | C. The third application shall consist of applying compost evenly at a 25 mm depth over the seed and jute mesh applications. ## MEASUREMENT AND PAYMENT The quantity of erosion control (blanket) will be determined by the square meter from actual slope measurement of the area covered by the erosion control blanket. The contract price paid per square meter for erosion control (blanket) shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all the work involved in installing erosion control blanket, complete in place, including furnishing and applying pure live seed, compost and the materials for the erosion control blanket, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. ### 10-1.30 ASPHALT CONCRETE Asphalt concrete shall be Type B and open graded and shall conform to the provisions in Section 39, "Asphalt Concrete," of the Standard Specifications and these special provisions. Open graded asphalt concrete may be placed when the atmospheric temperature is below 20°C, but above 7°C, provided the following requirements are met: - A. The aggregate grading shall be 12.5-mm maximum. - B. Open graded asphalt concrete shall not be placed in a windrow or stockpile. Open graded asphalt concrete shall be transferred directly from the hauling vehicle to the asphalt paver hopper. - C. Open graded asphalt concrete shall be not less than 30 mm in compacted thickness. - D. Immediately prior to adding the asphalt binder to the open graded asphalt concrete mixture, the temperature of the aggregate shall be not more than 163°C. Open graded asphalt concrete shall be spread at a temperature of not less than 115°C measured in the hopper in the asphalt paver. - E. The compaction operation shall be such that the maximum distance between the asphalt paver and the initial breakdown rolling shall be no greater than 15 m. - F. During the placement of open graded asphalt concrete, the speed of the asphalt paver shall not exceed 10 m per minute. - G. The Contractor shall cover loads of open graded asphalt concrete with tarpaulins. The tarpaulins shall completely cover exposed open graded asphalt concrete in the hauling vehicle until the open graded asphalt concrete has been completely transferred into the asphalt paver hopper. The grade of asphalt binder to be mixed with aggregate for Type open graded asphalt concrete shall be PBA Grade 6a and shall conform to the provisions in "Asphalt" of these special provisions. The amount of asphalt binder used in asphalt concrete placed in dikes and aprons at drainage structures shall be increased one percent by mass of the aggregate over the amount of asphalt binder determined for use in asphalt concrete placed on the traveled way. The miscellaneous areas to be paid for at the contract price per square meter for place asphalt concrete (miscellaneous area), in addition to the prices paid for the materials involved, shall be limited to the areas listed on the plans. Aggregate for asphalt concrete dikes shall be in conformance with the provisions for 9.5-mm Maximum grading in Section 39-2.02, "Aggregate," of the Standard Specifications. If the Contractor selects the batch mixing method, asphalt concrete shall be produced by the automatic batch mixing method in conformance with the provisions in Section 39-3.03A(2), "Automatic Proportioning," of the Standard Specifications. If the finished surface of the asphalt concrete on Route 9 traffic lanes does not meet the specified surface tolerances, the surfacing shall be brought within tolerance by either (1) abrasive grinding (with fog seal coat on the areas which have been ground), (2) removal and replacement or (3) placing an overlay of asphalt concrete. The method will be selected by the Engineer. The corrective work shall be at the Contractor's expense. If abrasive grinding is used to bring the finished surface to the specified surface tolerances, additional grinding shall be performed, as necessary, to extend the area ground in each lateral direction so that the lateral limits of grinding are at a constant offset from, and parallel to, the nearest lane line or pavement edge, and in each longitudinal direction so that the grinding begins and ends at lines normal to the pavement centerline, within any ground area. Ground areas shall be neat rectangular areas of uniform surface appearance. Abrasive grinding shall conform to the provisions in the first paragraph and the last 4 paragraphs in Section 42-2.02, "Construction," of the Standard Specifications. ## 10-1.31 REPLACE ASPHALT CONCRETE SURFACING This work shall consist of removing existing asphalt concrete surfacing and underlying base material and replacing the removed surfacing and base material with new asphalt concrete as shown on the plans and in conformance with these special provisions. The exact limits of asphalt concrete surfacing to be removed and replaced will be determined by the Engineer. Existing asphalt concrete surfacing and underlying base material removed during a work period shall be replaced before the time the lane is to be opened to public traffic in conformance with the provisions in "Maintaining Traffic" of these special provisions. The outline of the asphalt concrete to be removed shall be cut on neat lines with a power-driven saw to a minimum depth of 50 mm before removing the surfacing. Surfacing and base shall be removed without damage to surfacing that is to remain in place. Damage to pavement which is to remain in place shall be repaired to a condition satisfactory to the Engineer or the damaged pavement shall be removed and replaced with new asphalt concrete if ordered by the Engineer. Repairing or removing and replacing pavement damaged outside the limits of pavement to be replaced shall be at the Contractor's expense and will not be measured nor paid for. Removed materials shall be disposed of outside the highway right of way in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. The material remaining in place, after removing surfacing and base to the required depth, shall be graded to a plane, watered, and compacted. The finished surface of the remaining material shall not extend above the grade established by the Engineer. Areas of the base material which are low as a result of over excavation shall be filled, at the Contractor's expense, with asphalt concrete. Asphalt concrete shall conform to the provisions for asphalt concrete in "Asphalt Concrete" of these special provisions except for payment. The quantity of replace asphalt concrete surfacing to be paid for will be measured by the cubic meter. The volume to be paid for will be calculated on the basis of the dimensions shown on the plans adjusted by the amount of any change ordered by the Engineer. The contract price paid per cubic meter for replace asphalt concrete surfacing shall include full compensation for furnishing all labor, materials (including asphalt concrete), tools, equipment, and incidentals, and for doing all the work involved in replacing asphalt concrete surfacing, complete in place, as shown on the plans, as specified in the Standard Specifications and these special provisions, and as directed by the Engineer. If the aggregates for the asphalt concrete did not meet the "Contract Compliance" requirements for Sand Equivalent or gradation and if the Contractor requests the material be accepted on the basis of a penalty, in conformance with the provisions in the Section 39-2.02, "Aggregate," of the Standard Specifications, and the Engineer approves the request, the penalty shall be \$4.58 per cubic meter. #### 10-1.32 PILING ## **GENERAL** Piling shall conform to the provisions in Section 49, "Piling," of the Standard Specifications, and these special provisions. Unless otherwise specified, welding of any work performed in conformance with the provisions in Section 49, "Piling," of the Standard Specifications, shall be in conformance with the requirements in AWS D1.1. Foundation recommendations are included in the "Information Handout" available to the Contractor as provided for in Section 2-1.03, "Examination of Plans, Specifications, Contract, and Site of Work," of the Standard Specifications. Attention is directed to "Welding" of these special provisions. Difficult pile installation is anticipated due to caving soils, high ground water and traffic control. ### CAST-IN-DRILLED-HOLE CONCRETE PILES Cast-in-drilled-hole concrete piling shall conform to the provisions in Section 49-4, "Cast-In-Place Concrete Piles," of the Standard Specifications and these special provisions. The provisions of "Welding" of these special provisions shall not apply to temporary steel casings. Cast-in-drilled-hole concrete piles 600 mm in diameter or larger may be constructed by excavation and depositing concrete under slurry. ## Materials Concrete deposited under slurry shall have a nominal penetration equal to or greater than 90 mm. Concrete shall be proportioned to prevent excessive bleed water and segregation. Concrete deposited under slurry shall contain not less than 400 kg of cementitious material per cubic meter. The combined aggregate grading used in concrete for cast-in-drilled-hole concrete piling shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading and shall conform to the requirements in Section 90-3 "Aggregate Gradings," of the Standard
Specifications. Portions of cast-in-drilled-hole concrete piles shown on the plans to be formed shall be formed and finished in conformance with the provisions for concrete structures in Section 51, "Concrete Structures," of the Standard Specifications. ### Mineral Slurry Mineral slurry shall be mixed and thoroughly hydrated in slurry tanks, and slurry shall be sampled from the slurry tanks and tested before placement in the drilled hole. Slurry shall be recirculated or continuously agitated in the drilled hole to maintain the specified properties. Recirculation shall include removal of drill cuttings from the slurry before discharging the slurry back into the drilled hole. When recirculation is used, the slurry shall be sampled and tested at least every 2 hours after beginning its use until tests show that the samples taken from the slurry tank and from near the bottom of the hole have consistent specified properties. Subsequently, slurry shall be sampled at least twice per shift as long as the specified properties remain consistent. Slurry that is not recirculated in the drilled hole shall be sampled and tested at least every 2 hours after beginning its use. The slurry shall be sampled midheight and near the bottom of the hole. Slurry shall be recirculated when tests show that the samples taken from midheight and near the bottom of the hole do not have consistent specified properties. Slurry shall also be sampled and tested prior to final cleaning of the bottom of the hole and again just prior to placing concrete. Samples shall be taken from midheight and near the bottom of the hole. Cleaning of the bottom of the hole and placement of the concrete shall not start until tests show that the samples taken from midheight and near the bottom of the hole have consistent specified properties. Mineral slurry shall be tested for conformance to the requirements shown in the following table: | MINERAL SLURRY | | | |---|---------------------------|---| | PROPERTY | REQUIREMENT | TEST | | Density (kg/m ³) - before placement in the drilled hole - during drilling | 1030* to 1110* | Mud Weight
(Density) | | - prior to final cleaning - immediately prior to placing concrete | 1030* to 1200* | API 13B-1
Section 1 | | Viscosity | |) | | (seconds/liter) | | Marsh Funnel and
Cup | | bentonite | 29 to 53 | API 13B-1
Section 2.2 | | attapulgite | 29 to 42 | Section 2.2 | | рН | 8 to 10.5 | Glass Electrode pH
Meter or pH Paper | | Sand Content
(percent) | | Sand
API 13B-1 | | - prior to final cleaning - immediately prior to placing concrete | less than or equal to 4.0 | Section 5 | | *When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m ³ . | | | Slurry temperature shall be at least 4 degrees Celsius when tested. Any caked slurry on the sides or bottom of hole shall be removed before placing reinforcement. If concrete is not placed immediately after placing reinforcement, the reinforcement shall be removed and cleaned of slurry, the sides of the drilled hole cleaned of caked slurry, and the reinforcement again placed in the hole for concrete placement. # **Synthetic Slurry** Synthetic slurries shall be used in conformance with the manufacturer's recommendations and these special provisions. The following synthetic slurries may be used: | PRODUCT | MANUFACTURER | | |---------------|--------------------------------|--| | SlurryPro CDP | KB Technologies Ltd. | | | - | Suite 216 | | | | 735 Broad Street | | | | Chattanooga, TN 37402 | | | | (800) 525-5237 | | | Super Mud | PDS Company | | | | c/o Champion Equipment Company | | | | 8140 East Rosecrans Ave. | | | | Paramount, CA 90723 | | | | (562) 634-8180 | | | Shore Pac GCV | CETCO Drilling Products Group | | | | 1350 West Shure Drive | | | | Arlington Heights, IL 60004 | | | | (847) 392-5800 | | Inclusion of a synthetic slurry on the above list may be obtained by meeting the Department's requirements for synthetic slurries. The requirements can be obtained from the Office of Structure Design, P.O. Box 942874, Sacramento, CA 94274-0001 Synthetic slurries listed may not be appropriate for a given site. Synthetic slurries shall not be used in holes drilled in primarily soft or very soft cohesive soils as determined by the Engineer. A manufacturer's representative, as approved by the Engineer, shall provide technical assistance for the use of their product, shall be at the site prior to introduction of the synthetic slurry into a drilled hole, and shall remain at the site until released by the Engineer. Synthetic slurries shall be sampled and tested at both mid-height and near the bottom of the drilled hole. Samples shall be taken and tested during drilling as necessary to verify the control of the properties of the slurry. Samples shall be taken and tested when drilling is complete, but prior to final cleaning of the bottom of the hole. When samples are in conformance with the requirements shown in the following tables for each slurry product, the bottom of the hole shall be cleaned and any loose or settled material removed. Samples shall be obtained and tested after final cleaning with steel reinforcement in place and just prior to placing concrete. SlurryPro CDP synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SLURRYPRO CDP
KB Technologies Ltd. | | | | |--|-----------------------------|---|--| | PROPERTY | REQUIREMENT | TEST | | | Density (kg/m ³) - during drilling | less than or equal to 1075* | Mud Weight
(Density)
API 13B-1
Section 1 | | | - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | | | | Viscosity (seconds/liter) - during drilling -prior to final | 53 to 127 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | | cleaning - just prior to placing concrete | less than or equal to 74 | | | | рН | 6 to 11.5 | Glass Electrode pH
Meter or pH Paper | | | Sand Content (percent) - prior to final cleaning - just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | | *When ammond has | the Engineer along | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m³. Slurry temperature shall be at least 4 degrees Celsius when tested. Super Mud synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SUPER MUD | | | | |--|-----------------------------------|---|--| | PDS Company | | | | | PROPERTY | REQUIREMENT | TEST | | | Density (kg/m ³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | | | Viscosity (seconds/liter) - during drilling - prior to final cleaning - just prior to placing concrete | 34 to 64 less than or equal to 64 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | | рН | 8 to 10.0 | Glass Electrode pH
Meter or pH Paper | | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Slurry temperature shall be at least 4 degrees Celsius when tested. Shore Pac GCV synthetic slurries shall be tested for conformance to the requirements shown in the following table: | Shore Pac GCV | | | |--|------------------------------------|---| | CETCO Drilling Products Group | | | | PROPERTY | REQUIREMENT | TEST | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | | Viscosity (seconds/liter) - during drilling - prior to final cleaning - just prior to placing concrete | 35 to 78 less than or equal to 60 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | рН | 8.0 to 11.0 | Glass Electrode pH
Meter or pH Paper | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand API 13B-1 Section 5 | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Slurry temperature shall be at least 4 degrees Celsius when tested. ## Water Slurry At the option of the Contractor water may be used as slurry when casing is used for the entire length of the drilled hole. Water slurry shall be tested for conformance to the requirements shown in the following table: | WATER SLURRY | | | |---|---------------------------|---| | PROPERTY | REQUIREMENT | TEST | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | 1017 * | Mud Weight
(Density)
API 13B-1
Section 1 | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | ^{*}When approved by the Engineer, salt water slurry may be used, and the allowable densities may be increased up to 32 kg/m³. ### Construction The Contractor shall submit a placing plan to the Engineer for
approval prior to producing the test batch for cast-indrilled-hole concrete piling and at least 10 working days prior to constructing piling. The plan shall include complete description, details, and supporting calculations as listed below: ## A. Requirements for all cast-in-drilled hole concrete piling: - 1. Concrete mix design, certified test data, and trial batch reports. - 2. Drilling or coring methods and equipment. - 3. Proposed method for casing installation and removal when necessary. - 4. Plan view drawing of pile showing reinforcement and inspection pipes, if required. - 5. Methods for placing, positioning, and supporting bar reinforcement. - 6. Methods and equipment for accurately determining the depth of concrete and actual and theoretical volume placed, including effects on volume of concrete when any casings are withdrawn. - 7. Methods and equipment for verifying that the bottom of the drilled hole is clean prior to placing concrete. - 8. Methods and equipment for preventing upward movement of reinforcement, including the Contractor's means of detecting and measuring upward movement during concrete placement operations. # B. Additional requirements when concrete is placed under slurry: - 1. Concrete batching, delivery, and placing systems including time schedules and capacities therefor. Time schedules shall include the time required for each concrete placing operation at each pile. - 2. Concrete placing rate calculations. When requested by the Engineer, calculations shall be based on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced. - 3. Suppliers test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives including Material Safety Data Sheet. - 4. Slurry testing equipment and procedures. - 5. Removal and disposal of excavation, slurry, and contaminated concrete, including methods and rates of removal. - 6. Slurry agitating, recirculating, and cleaning methods and equipment. In addition to compressive strength requirements, the consistency of the concrete to be deposited under slurry shall be verified before use by producing a batch to be tested. The test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during the placement of concrete in the piles. Concrete for the test batch shall be placed in an excavated hole or suitable container of adequate size to allow testing in conformance with California Test 533. Depositing of test batch concrete under slurry will not be required. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be 2 hours or less, the test batch shall demonstrate that the proposed concrete mix design achieves both the specified nominal penetration and a penetration of at least 50 mm after twice that time has elapsed. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be more than 2 hours, the test batch shall demonstrate that the proposed concrete mix design achieves both the specified nominal penetration and a penetration of at least 50 mm after that time plus 2 hours has elapsed. The time period shall begin at the start of placement. The concrete shall not be vibrated or agitated during the test period. Upon completion of testing, the concrete shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. Concrete deposited under slurry shall not be vibrated until all temporary casing is removed and concrete contaminated with soil, slurry, or other materials is removed. Concrete deposited under slurry shall be vibrated in the upper 2 m of the pile. The concrete deposited under slurry shall be carefully placed in a compact, monolithic mass and by a method that will prevent washing of the concrete. Placing concrete shall be a continuous operation lasting not more than the time required for each concrete placing operation at each pile, as submitted in the placing plan, unless otherwise approved in writing by the Engineer. The concrete shall be placed with concrete pumps and delivery tube system of adequate number and size to complete the placing of concrete in the time specified. The delivery tube system shall consist of one of the following: - A. A tremie tube or tubes, each of which are at least 250 mm in diameter, fed by one or more concrete pumps. - B. One or more concrete pump tubes, each fed by a single concrete pump. The delivery tube system shall consist of watertight tubes with sufficient rigidity to keep the ends always in the mass of concrete placed. If only one delivery tube is utilized to place the concrete, the tube shall be placed near the center of the drilled hole. Multiple tubes shall be uniformly spaced in the hole. Internal bracing for the steel reinforcing cage shall accommodate the delivery tube system. Tremies shall not be used for piles without space for a 250-mm tube. Spillage of concrete into the slurry during concrete placing operations shall not be allowed. Delivery tubes shall be capped with a water tight cap, or plugged above the slurry level with a good quality, tight fitting, moving plug that will expel the slurry from the tube as the tube is charged with concrete. The cap or plug shall be designed to be released as the tube is charged. The pump discharge or tremie tube shall extend to the bottom of the hole before charging the tube with concrete. After charging the delivery tube system with concrete, the flow of concrete through a tube shall be induced by slightly raising the discharge end. During concrete placement, the tip of the delivery tube shall be maintained to prevent reentry of the slurry into the tube. Until at least 3 m of concrete has been placed, the tip of the delivery tube shall be within 150 mm of the bottom of the drilled hole, and then the embedment of the tip shall be maintained at least 3 m below the top surface of the concrete. Rapid raising or lowering of the delivery tube shall not be permitted. If the seal is lost or the delivery tube becomes plugged and must be removed, the tube shall be withdrawn, the tube cleaned, the tip of the tube capped to prevent entrance of the slurry, and the operation restarted by pushing the capped tube 3 m into the concrete and then reinitiating the flow of concrete. When slurry is used, a fully operational standby concrete pump, adequate to complete the work in the time specified, shall be provided at the site during concrete placement. The slurry level shall be maintained within 300 mm of the top of the drilled hole. A log of concrete placement for each drilled hole shall be maintained by the Contractor when concrete is deposited under slurry. The log shall show the pile location, tip elevation, dates of excavation and concrete placement, total quantity of concrete deposited, length and tip elevation of any casing, and details of any hole stabilization method and materials used. The log shall include a 215 mm x 280 mm sized graph of the concrete placed versus depth of hole filled. The graph shall be plotted continuously throughout placing of concrete. The depth of drilled hole filled shall be plotted vertically with the pile tip oriented at the bottom and the quantity of concrete shall be plotted horizontally. Readings shall be made at least at each 1.5 m of pile depth, and the time of the reading shall be indicated. The graph shall be labeled with the pile location, tip elevation, cutoff elevation, and the dates of excavation and concrete placement. The log shall be delivered to the Engineer within one working day of completion of placing concrete in the pile. After placing reinforcement and prior to placing concrete in the drilled hole, if drill cuttings settle out of slurry, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean. If temporary casing is used, concrete placed under slurry shall be maintained at a level at least 1.5 m above the bottom of the casing. The withdrawal of casings shall not cause contamination of the concrete with slurry. Material resulting from using slurry shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. ## **Acceptance Testing and Mitigation** Vertical inspection pipes for acceptance testing shall be provided in all cast-in-drilled-hole concrete piles that are 600 mm in diameter or larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing to control the groundwater. Inspection pipes shall be Schedule 40 polyvinyl chloride pipe with a nominal inside diameter of 50 mm. Each inspection pipe shall be capped top and bottom and shall have watertight couplers to provide a clean, dry and unobstructed 50-mm diameter clear opening from 1.0 m above the pile cutoff down to the bottom of the reinforcing cage. If the Contractor drills the hole below the specified tip elevation, the reinforcement and the inspection pipes shall be extended to 75 mm clear of the bottom of the drilled hole. Inspection pipes shall be placed around the pile, inside the outermost spiral or hoop reinforcement, and 75 mm clear of the vertical reinforcement, at a uniform spacing not exceeding 840 mm measured along the circle passing through the centers of inspection pipes. A minimum of 2 inspection pipes per pile shall be used. When the vertical reinforcement is not bundled and each bar is not more than 26 mm in diameter, inspection pipes may be placed 50 mm clear of the vertical reinforcement. The inspection pipes shall be placed to provide the maximum diameter circle that passes through the centers of the inspection pipes while
maintaining the clear spacing required herein. The pipes shall be installed in straight alignment, parallel to the main reinforcement, and securely fastened in place to prevent misalignment during installation of the reinforcement and placing of concrete in the hole. The Contractor shall log the location of the inspection pipe couplers with respect to the plane of pile cut off, and these logs shall be delivered to the Engineer upon completion of the placement of concrete in the drilled hole. After placing concrete and before requesting acceptance tests, each inspection pipe shall be tested by the Contractor in the presence of the Engineer by passing a 48.3-mm diameter rigid cylinder 610 mm long through the complete length of pipe. If the 48.3-mm diameter rigid cylinder fails to pass any of the inspection pipes, the Contractor shall attempt to pass a 32.0-mm diameter rigid cylinder 1.375 m long through the complete length of those pipes in the presence of the Engineer. If an inspection pipe fails to pass the 32.0-mm diameter cylinder, the Contractor shall immediately fill all inspection pipes in the pile with water. The Contractor shall replace each inspection pipe that does not pass the 32.0-mm diameter cylinder with a 50.8-mm diameter hole cored through the concrete for the entire length of the pile. Cored holes shall be located as close as possible to the inspection pipes they are replacing, no more than 150 mm inside the reinforcement, and coring shall not damage the pile reinforcement. Cored holes shall be made with a double wall core barrel system utilizing a split tube type inner barrel. Coring with a solid type inner barrel will not be allowed. Coring methods and equipment shall provide intact cores for the entire length of the pile concrete. The coring operation shall be logged by an Engineering Geologist or Civil Engineer licensed in the State of California and experienced in core logging. Coring logs shall include complete descriptions of inclusions and voids encountered during coring, and shall be delivered to the Engineer upon completion. Concrete cores shall be preserved, identified with the exact location the core was recovered from within the pile, and made available for inspection by the Engineer. Acceptance tests of the concrete will be made by the Engineer, without cost to the Contractor. Acceptance tests will evaluate the homogeneity of the placed concrete. Tests will include gamma-gamma logging. Tests may also include crosshole sonic logging and other means of inspection selected by the Engineer. The Contractor shall not conduct operations within 8.0 m of the gamma-gamma logging operations. The Contractor shall separate reinforcing steel as necessary to allow the Engineer access to the inspection pipes to perform gamma-gamma logging or other acceptance testing. After requesting acceptance tests and providing access to the piling, the Contractor shall allow 3 weeks for the Engineer to conduct these tests and make determination of acceptance if the 48.3-mm diameter cylinder passed all inspection pipes, and 4 weeks if only the 32.0-mm diameter cylinder passed all inspection pipes. Should the Engineer fail to complete these tests within the time allowance, and if in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in inspection, the delay will be considered a right of way delay as specified in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. All inspection pipes and cored holes in a pile shall be dewatered and filled with grout after notification by the Engineer that the pile is acceptable. Placement and removal of water in the inspection pipes shall be at the Contractors expense. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. The inspection pipes and holes shall be filled using grout tubes that extend to the bottom of the pipe or hole or into the grout already placed. If acceptance testing performed by the Engineer determines that a pile does not meet the requirements of the specifications, then that pile will be rejected and all depositing of concrete under slurry or concrete placed using temporary casing for the purpose of controlling groundwater shall be suspended until written changes to the methods of pile construction are approved in writing by the Engineer. The Contractor shall submit to the Engineer for approval a mitigation plan for repair, supplementation, or replacement for each rejected cast-in-drilled-hole concrete pile, and this plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Prior to submitting this mitigation plan, the Engineer will hold a repair feasibility meeting with the Contractor to discuss the feasibility of repairing rejected piling. The Engineer will consider the size of the defect, the location of the defect, and the design information and corrosion protection considerations for the pile. This information will be made available to the Contractor, if appropriate, for the development of the mitigation plan. If the Engineer determines that it is not feasible to repair the rejected pile, the Contractor shall not include repair as a means of mitigation and shall proceed with the submittal of a mitigation plan for replacement or supplementation of the rejected pile. If the Engineer determines that a rejected pile does not require mitigation due to structural, geotechnical, or corrosion concerns, the Contractor may elect to 1) repair the pile per the approved mitigation plan, or 2) not repair anomalies found during acceptance testing of that pile. For such unrepaired piles, the Contractor shall pay to the State, \$400 per cubic meter for the portion of the pile affected by the anomalies. The volume, in cubic meters, of the portion of the pile affected by the anomalies, shall be calculated as the area of the cross-section of the pile affected by each anomaly, in square meters, as determined by the Engineer, multiplied by the distance, in meters, from the top of each anomaly to the specified tip of the pile. If the volume calculated for one anomaly overlaps the volume calculated for additional anomalies within the pile, the calculated volume for the overlap shall only be counted once. In no case shall the amount of the payment to the State for any such pile be less than \$400. The Department may deduct the amount from any moneys due, or that may become due the Contractor under the contract. Pile mitigation plans shall include the following: - A. The designation and location of the pile addressed by the mitigation plan. - B. A review of the structural, geotechnical, and corrosion design requirements of the rejected pile. - C. A step by step description of the mitigation work to be performed, including drawings if necessary. - D. An assessment of how the proposed mitigation work will address the structural, geotechnical, and corrosion design requirements of the rejected pile. - E. Methods for preservation or restoration of existing earthen materials. - F. A list of affected facilities, if any, with methods and equipment for protection of these facilities during mitigation. - G. The State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor's (and Subcontractor's if applicable) name on each sheet. - H. A list of materials, with quantity estimates, and personnel, with qualifications, to be used to perform the mitigation work. - I. The seal and signature of an engineer who is licensed as a Civil Engineer by the State of California. For rejected piles to be repaired, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. An assessment of the nature and size of the anomalies in the rejected pile. - B. Provisions for access for additional pile testing if required by the Engineer. For rejected piles to be replaced or supplemented, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. The proposed location and size of additional piling. - B. Structural details and calculations for any modification to the structure to accommodate the replacement or supplemental piling. All provisions for cast-in-drilled-hole concrete piling shall apply to replacement piling. The Contractor shall allow the Engineer 3 weeks to review the mitigation plan after a complete submittal has been received. Should the Engineer fail to review the complete pile mitigation submittal within the time specified, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the pile mitigation plan, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. When repairs are performed, the Contractor shall submit a mitigation report to the Engineer within 10 days of completion of the repair. This report shall state exactly what repair work was performed and quantify the success of the repairs relative to the submitted mitigation plan. The mitigation report shall be stamped and signed by an engineer that is licensed as a Civil Engineer by the State of California. The mitigation report shall show the State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor (and Subcontractor if applicable) name on each sheet. The Engineer will be the sole judge as to whether a mitigation proposal is acceptable, the mitigation efforts are successful, and to whether additional repairs, removal and replacement, or construction of a supplemental foundation is required. ###
MEASUREMENT AND PAYMENT (PILING) Measurement and payment for the various types and classes of piles shall conform to the provisions in Sections 49-6.01, "Measurement," and 49-6.02, "Payment," of the Standard Specifications and these special provisions. Payment for cast-in-place concrete piling shall conform to the provisions in Section 49-6.02, "Payment," of the Standard Specifications except that, when the diameter of cast-in-place concrete piling is shown on the plans as 600 mm or larger, reinforcement in the piling will be paid for by the kilogram as bar reinforcing steel (bridge). Full compensation for furnishing and placing additional testing reinforcement, for load test anchorages, and for cutting off test piles as specified, shall be considered as included in the contract price paid for piling of the type or class shown in the Engineer's Estimate, and no additional compensation will be allowed. No additional compensation or extension of time will be made for additional foundation investigation, installation and testing of indicator piling, cutting off piling and restoring the foundation investigation and indicator pile sites, and review of request by the Engineer. Full compensation for slurry, depositing concrete under slurry, test batches, inspection pipes, filling inspection holes and pipes with grout, drilling oversized cast-in-drilled-hole concrete piling, filling cave-ins and oversized piles with concrete, and redrilling through concrete, shall be considered as included in the contract prices paid per meter for cast-in-drilled-hole concrete piling of the types and sizes listed in the Engineer's Estimate, and no additional compensation will be allowed therefor. #### 10-1.33 CONCRETE STRUCTURES Portland cement concrete structures shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions. Shotcrete shall not be used as an alternative construction method for reinforced concrete members unless otherwise specified. ### **FALSEWORK** Falsework shall conform to the provisions in Section 51, "Concrete Structures," of the Standard Specifications and these special provisions. ### Welding and Nondestructive Testing Welding of steel members, except for previously welded splices and except for when fillet welds are used where load demands are less than or equal to 175 N/mm for each 3 mm of fillet weld, shall conform to AWS D1.1 or other recognized welding standard. The welding standard to be utilized shall be specified by the Contractor on the working drawings. Previously welded splices for falsework members are defined as splices made prior to the member being shipped to the project site. Splices made by field welding of steel beams at the project site shall undergo nondestructive testing (NDT). At the option of the Contractor, either ultrasonic testing (UT) or radiographic testing (RT) shall be used as the method of NDT for each field weld and any repair made to a previously welded splice in a steel beam. Testing shall be performed at locations selected by the Contractor. The length of a splice weld where NDT is to be performed, shall be a cumulative weld length equal to 25 percent of the original splice weld length. The cover pass shall be ground smooth at the locations to be tested. The acceptance criteria shall conform to the requirements of AWS D1.1, Section 6, for cyclically loaded nontubular connections subject to tensile stress. If repairs are required in a portion of the weld, additional NDT shall be performed on the repaired sections. The NDT method chosen shall be used for an entire splice evaluation including any required repairs. For all field welded splices, the Contractor shall furnish to the Engineer a letter of certification which certifies that all welding and NDT, including visual inspection, are in conformance with the specifications and the welding standard shown on the approved working drawings. This letter of certification shall be signed by an engineer who is registered as a Civil Engineer in the State of California and shall be provided prior to placing any concrete for which the falsework is being erected to support. For previously welded splices, the Contractor shall determine and perform all necessary testing and inspection required to certify the ability of the falsework members to sustain the stresses required by the falsework design. This welding certification shall be in writing, shall be signed by an engineer who is registered as a Civil Engineer in the State of California, and shall be provided prior to placing any concrete for which the falsework is being erected to support. The Contractor's engineer who signs the falsework drawings shall also certify in writing that the falsework is constructed in conformance with the approved drawings and the contract specifications prior to placing concrete. This certification shall include performing any testing necessary to verify the ability of the falsework members to sustain the stresses required by the falsework design. The engineer who signs the drawings may designate a representative to perform this certification. Where falsework contains openings for railroads, vehicular traffic, or pedestrians, the designated representative shall be qualified to perform this work, shall have at least three years of combined experience in falsework design or supervising falsework construction, and shall be registered as a Civil Engineer in the State of California. For other falsework, the designated representative shall be qualified to perform this work and shall have at least three years of combined experience in falsework design or supervising falsework construction. The Contractor shall certify the experience of the designated representative in writing and provide supporting documentation demonstrating the required experience if requested by the Engineer. ### DECK CRACK TREATMENT The Contractor shall use all means necessary to minimize the development of shrinkage cracks. The Contractor shall remove all equipment and materials from the deck and clean the surface as necessary for the Engineer to measure the surface crack intensity. Surface crack intensity will be determined by the Engineer after completion of concrete cure, prior to prestressing, and prior to the release of falsework. In any 50-m² portion of deck within the limits of the new concrete deck, should the intensity of cracking be such that there are more than 5 m of cracks whose width at any location exceeds 0.5-mm, the deck shall be treated with methacrylate resin. The area of deck to be treated shall have a width that extends for the entire width of new deck inside the concrete barriers and a length that extends at least 1.5 m beyond the furthest single continuous crack outside the 50-m² portion, measured from where that crack exceeds 0.5-mm in width, as determined by the Engineer. Deck crack treatment shall consist of test sealing, and furnishing and applying methacrylate resin in conformance with the requirements of these special provisions. If grinding operation is required, deck treatment shall take place after grinding. Prior to the start of deck treatment work, the Contractor shall submit for approval by the Engineer, a program for public safety associated with the use of methacrylate resin. The program shall identify materials, equipment, and methods to be used. The Contractor shall not perform deck treatment work, other than that specifically authorized in writing by the Engineer, until the program has been approved. If the measures being taken by the Contractor are inadequate to provide for public safety associated with use of methacrylate resin, the Engineer will direct the Contractor to revise the operations and the public safety program. Directions for revisions will be in writing and will specify the items in which the Contractor's program is inadequate. No further deck treatment shall be performed until public safety measures are adequate, and a revised program for public safety has been approved. The Engineer will notify the Contractor of the approval or rejection of any submitted or revised program for public safety associated with the use of methacrylate resin within 10 working days of receipt of the final submitted program. The State will not be liable to the Contractor for failure to approve all or any portion of an originally submitted or revised program for public safety associated with the use of methacrylate resin, nor for any delays to the work due to the Contractor's failure to submit an acceptable program for public safety associated with the use of methacrylate resin. If the Engineer does not review or approve the program submitted by the Contractor within the time specified and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the program for public safety, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. ### Materials The material used for treating the deck shall be a high molecular weight methacrylate resin conforming to the following: | PROPERTY | TEST METHOD | REQUIREMENT | |--|---------------------|-------------| | Viscosity | ASTM D 2196 | 0.025 | | mPa·s, maximum, | | | | (Brookfield RVT | | | | with UL adaptor, 50 | | | | RPM at 25°C) | | | | Specific Gravity | ASTM D 1475 | 0.90 | | minimum, at 25°C | | | | Flash Point | ASTM D 3278 | 82 | | °C, minimum | | | | Vapor Pressure | ASTM D 323 | 1.0 | | mm Hg, maximum, | | | | at 25°C | | | | Tack-free time | California Test 551 | 400 | | minutes, maximum | | | | at 25°C | | | | PCC Saturated | California Test 551 | 3.5 | | Surface-Dry Bond | | | | Strength | | | | MPa, minimum at | | | | 24 hours and | | | | 21±1°C | | | | * Test shall be performed prior to adding initiator. | |
 A Material Safety Data Sheet shall be furnished prior to use for each shipment of high molecular weight methacrylate resin. The promoter and initiator, if supplied separately from the resin, shall not be mixed directly with each other. Containers of promoters and initiators shall not be stored together in a manner that will allow leakage or spillage from one to contact the containers or material of the other. ## Testing The Contractor shall allow 14 days for sampling and testing by the Engineer of the high molecular weight methacrylate resin prior to proposed use. The Contractor shall treat a test area within the project limits of approximately 50 m² at a location approved by the Engineer. Conditions during the test treatment shall be similar to those expected on the deck. Equipment used in the test shall be similar to those used for the deck treating operations. If the test area is on the traveled way, traffic shall not be allowed on the treated test area until (1) the treated surface is tack free (non-oily), (2) the sand cover adheres sufficiently to resist brushing by hand, and (3) the coefficient of friction of the deck is at least 0.35 when tested in conformance with the requirements in California Test 342. Should the above requirements for traffic use not be met, the Contractor shall suspend treating of bridge decks until another test area is treated and complies with the requirements. ### Construction Prior to deck treatment with methacrylate resin, the bridge deck surface shall be cleaned by abrasive blasting and all loose material shall be blown from visible cracks using high-pressure air. Concrete curing seals shall be cleaned from the deck surface to be treated, and the deck shall be dry when blast cleaning is performed. If the deck surface becomes contaminated at any time prior to placing the penetrating sealer, the deck surface shall be cleaned by abrasive blasting. Equipment shall be fitted with suitable traps, filters, drip pans, or other devices as necessary to prevent oil or other deleterious material from being deposited on the deck. Where abrasive blasting is being performed within 3 m of a lane occupied by public traffic, the residue including dust shall be removed immediately after contact between the abrasive and the surface being treated. The removal shall be by a vacuum attachment operating concurrently with the abrasive blasting operation. The relative humidity shall be less than 90 percent at time of treatment. A compatible promoter/initiator system shall be capable of providing a resin gel time of not less than 40 minutes nor more than 1.5 hours at the temperature of application. Gel time shall be adjusted to compensate for the changes in temperature throughout treatment application. The quantity of resin mixed with promoter and initiator shall be limited to 20 L at a time for manual application. Machine application of the resin shall be performed by using a two-part resin system using a promoted resin for one part and an initiated resin for the other part. This two-part resin system shall be combined at equal volumes to the spray bars through separate positive displacement pumps. Combining of the 2 components shall be by either static in-line mixers or by external intersecting spray fans. The pump pressure at the spray bars shall not be great enough to cause appreciable atomization of the resin. Compressed air shall not be used to produce the spray. A shroud shall be used to enclose the spray bar apparatus. Hand held spray apparatus shall not be used. The Contractor shall allow methacrylate resin to be applied only to the specified area. Barrier rails, joints, and drainage facilities shall be adequately protected to prevent contamination by the treatment material. Contaminated items shall be repaired at the Contractor's expense. The prepared area shall be dry and the surface temperature shall be less than or equal to 38° C when the resin is applied. The rate of application of promoted/initiated resin shall be approximately 2.5 square meters per liter, \pm 0.1 square meter per liter. The deck surfaces to be treated shall be flooded with resin, allowing penetration into the concrete and filling of all cracks. The treatment shall be applied within 5 minutes after complete mixing. A significant increase in viscosity shall be cause for rejection. Excess material shall be redistributed by squeegees or brooms within 10 minutes after application. After the resin has been applied, at least 20 minutes shall elapse before applying sand. The sand shall be commercial quality dry blast sand. Ninety-five percent of the sand shall pass the 2.36-mm sieve, and 95 percent shall be retained on the 850- μ m sieve. The sand shall be applied at a rate of one kilogram per square meter, \pm 0.1 kilogram per square meter. Excess sand shall be removed from the deck surface by vacuuming or sweeping prior to opening to traffic. Traffic shall not be allowed on the treated area until (1) the treated surface is tack free (non-oily), (2) the sand cover adheres sufficiently to resist brushing by hand, and (3) the coefficient of friction of the deck is at least 0.35 when tested in conformance with the requirements in California Test 342. ### 10-1.34 REINFORCEMENT Reinforcement shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications and these special provisions. Individual hoops, made continuous with butt welded splices, which are substituted for spiral reinforcement, shall conform to the requirements for "Ultimate Butt Splices" of these special provisions. ### **ULTIMATE BUTT SPLICES** Ultimate butt splices shall be either welded or mechanical splices, shall be used at the locations shown on the plans, and shall conform to the provisions in Section 52, "Reinforcement," of the Standard Specifications and these special provisions. ## **General Requirements** The Contractor shall designate in writing an ultimate butt splicing Quality Control Manager (QCM). The QCM shall be responsible directly to the Contractor for 1) the quality of all ultimate butt splicing including the inspection of materials and workmanship performed by the Contractor and all subcontractors; and 2) submitting, receiving, and approving all correspondence, required submittals, and reports regarding ultimate butt splicing to and from the Engineer. The QCM shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors, who will provide other services or materials for the project. The QCM may be an employee of the Contractor. The length of any type of ultimate mechanical butt splice shall not exceed 10 times the bar diameter of the larger bar to be spliced. All ultimate prejob, production, and job control sample splices shall be 1) a minimum length of 1.5 meters for reinforcing bars No. 25 or smaller and 2 meters for reinforcing bars No. 29 or larger, with the splice located at mid-point, and 2) suitably identified prior to shipment with weatherproof markings that do not interfere with the Engineer's tamper-proof markings or seals. Any splice that shows signs of tampering will be rejected. A minimum of one control bar shall be removed from the same bar as, and adjacent to, all ultimate prejob, production, and job control sample splices. Control bars shall be 1) a minimum length of one meter for reinforcing bars No. 25 or smaller and 1.5 meters for reinforcing bars No. 29 or larger, and 2) suitably identified prior to shipment with weatherproof markings that do not interfere with the Engineer's tamper-proof markings or seals. The portion of adjacent bar remaining in the work shall also be identified with weatherproof markings that correspond to its adjacent control bar. Shorter length sample splice and control bars may be furnished if approved in writing by the Engineer. Each sample splice and its associated control bar shall be identified and marked as a set. Each set shall be identified as representing a prejob, production, or job control sample splice. The portion of hoop reinforcing bar, removed to obtain a sample splice and control bar, shall be replaced using a prequalified ultimate mechanical butt splice, or the hoop shall be replaced in kind. Reinforcing bars, other than hoops, from which sample splices are removed, shall be repaired using ultimate mechanical butt splices conforming to the provisions in "Prejob Test Requirements for Ultimate Butt Splices" specified herein, or the bars shall be replaced in kind. Section 52-1.08E, "Job Control Tests," of the Standard Specifications shall not apply. The provisions for total slip shall not apply to any ultimate splices that are welded or that are used on hoops. The independent qualified testing laboratory used to perform the testing of all ultimate butt sample splices and control bars shall not be employed or compensated by any subcontractor, or by other persons or entities hired by subcontractors who will provide other services or materials for the project, and shall have the following: - A. Proper facilities, including a tensile testing machine capable of breaking the largest size of reinforcing bar to be tested. - B. A device for measuring the total slip of the reinforcing bars across the splice to the nearest 25 μm, that, when placed parallel to the longitudinal axis of the bar is able to simultaneously measure movement across the splice, at 2 locations, 180 degrees apart. - C. Operators who have received formal training for performing the testing requirements of ASTM Designation: A 370/A 370M and California Test 670. - D. A record of annual calibration of testing equipment performed by an independent third party that has 1) standards that are traceable to the National Institute of Standards and Technology, and 2) a formal reporting procedure, including published test forms. ## **Ultimate Butt Splice Test Criteria** Ultimate prejob, production, and job control sample splices shall be
tensile tested in conformance with the requirements described in ASTM Designation: A 370/A 370M and California Test 670. Ultimate prejob and production sample splices shall rupture in the reinforcing bar either: 1) outside of the affected zone or 2) within the affected zone, provided that the sample has achieved at least 95 percent of the ultimate tensile strength of the control bar associated with the sample. In addition, necking of the bar shall be visibly evident at rupture regardless of whether the bar breaks inside or outside the affected zone. The affected zone is the portion of the reinforcing bar where any properties of the bar, including the physical, metallurgical, or material characteristics, have been altered by fabrication or installation of the splice. The ultimate tensile strength of each control bar shall be determined by tensile testing the bar to rupture and shall be determined for all control bars, regardless of where each sample splice ruptures. If 2 control bars are tested for one sample splice, the bar with the lower ultimate tensile strength shall be considered the control bar. Testing to determine the minimum tensile strength, in conformance with the provisions in the ninth paragraph of Section 52-1.08, "Splicing," of the Standard Specifications, will not be required. ## **Prejob Test Requirements for Ultimate Butt Splices** Prior to use in the work, all ultimate butt splices shall conform to the following prejob test requirements: - A. Eight prejob sample splices for each bar size of each splice type including ultimate mechanical butt splices, ultimate complete joint penetration butt welded splices, and ultimate resistance butt welded splices, that will be used in the work, shall be fabricated by the Contractor. For deformation-dependent types of couplers, 8 sample prejob splices shall also be fabricated for each reinforcing bar size and deformation pattern that will be used in the work. - B. The sample splices shall be fabricated using the same splice materials, position, operators, location, and equipment, and following the same procedures as will be used to make the splices in the work. - C. At the option of the Contractor, operator qualification tests may be performed simultaneously with the preparation of prejob sample splices. - D. If different diameters of hoops are shown on the plans, prejob sample splices, as described above, will only be required for the smallest hoop diameter. In addition, these splices shall be fabricated using the same radius as shown on the plans for these hoops. - E. Unless otherwise directed in writing by the Engineer, 4 prejob sample splices and control bar sets shall be shipped to the Transportation Laboratory and the remaining 4 sets shall be tested by the Contractor's independent qualified testing laboratory. - F. Each group of 4 sets from a prejob test shall be securely bundled together and identified by location and contract number with weatherproof markings prior to shipment. Bundles containing fewer than 4 sets will not be tested by the Transportation Laboratory, nor shall they be tested by the independent laboratory. - G. All 8 sample splices from each prejob test shall conform to the provisions in "Ultimate Butt Splice Test Criteria" specified herein. - H. Prior to performing any tensile tests on prejob test sample splices, one of the 4 samples shall be tested for, and shall conform to, the provisions for total slip. Should this sample not meet these requirements, one retest, in which the 3 remaining samples are tested for total slip, will be allowed. All 3 of these remaining samples tested shall conform to the aforementioned slip requirements. - I. For each bundle of 4 sets, a Prejob Test Report shall be prepared by the independent testing laboratory performing the testing. The report shall 1) be signed by an engineer who represents the laboratory and is registered as a Civil Engineer in the State of California; 2) include, as a minimum, the following information for each set: contract number, bridge number, bar size, type of splice, length of mechanical splice, physical condition of test sample splice and control bar, any notable defects, limits of affected zone, total measured slip, location of visible necking area, ultimate strength of each splice, ultimate strength and 95 percent of this ultimate strength for each control bar, and a comparison between 95 percent of the ultimate strength of each control bar and the ultimate strength of its associated splice; and 3) be submitted to the QCM for review and approval, and then to the Engineer. - J. Test results for each bundle of 4 sets will be reported in writing to the Contractor within 10 working days after receipt of the bundle by the Transportation Laboratory. In the event that more than one bundle is received on the same day, 2 additional working days shall be allowed for providing test results for each additional bundle received. A test report will be made for each bundle received. - K. Should the Engineer fail to provide the test results within this time allowance and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in providing the test results, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. ## **Production Test Requirements for Ultimate Butt Splices** Production tests shall be performed for all ultimate butt splices used in the work. A production test shall consist of 4 sets of sample splices and control bars removed from each lot of completed splices, except when quality assurance tests are performed. A lot of ultimate butt splices is defined as 1) 150, or fraction thereof, of the same type of ultimate mechanical butt splices used for each bar size and each bar deformation pattern that is used in the work or 2) 150, or fraction thereof, of ultimate complete joint penetration butt welded splices, or ultimate resistance butt welded splices for each bar size used in the work. If different diameters of hoop reinforcement are shown on the plans, separate lots shall be used for each different hoop diameter. After all splices in a lot have been completed, the QCM shall notify the Engineer in writing that all couplers in this lot conform to the specifications and are ready for testing. The sample splices will either be selected by the Engineer at the job site or a fabrication facility, provided the facility is located within an 80-km radius of the jobsite. At the option of the Contractor, sample splices for spiral reinforcement may be either 1) removed from the completed lot, or 2) prepared in the same manner as specified herein for ultimate prejob sample splices and control bars. After notification has been received, the Engineer will randomly select the 4 sample splices to be removed from the lot and place tamper-proof markings or seals on them. The Contractor or QCM shall select the adjacent control bar for each sample splice bar, and the Engineer will place tamper-proof markings or seals on them. These ultimate production sample splices and control bars shall be removed by the Contractor, and tested by an independent qualified testing laboratory, in the presence of either the Engineer or the Engineer's authorized representative. The Engineer or the Engineer's authorized representative will be at the independent qualified testing laboratory within a maximum of 5 working days after receiving written notification that the samples are at the laboratory and ready for testing. Should the Engineer or the Engineer's authorized representative fail to be at the laboratory within this time allowance, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of this action, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. A sample splice or control bar from any set will be rejected if any tamper-proof marking or seal is disturbed prior to testing. The 4 sets from each production test shall be securely bundled together and identified with a completed sample identification card prior to shipment to the independent laboratory. The card will be furnished by the Engineer. Bundles of samples containing fewer than 4 sets of splices shall not be tested. A Production Test Report for all testing performed on each lot shall be prepared by the independent testing laboratory performing the testing and submitted to the QCM for review and approval. The report shall be signed by an engineer who represents the laboratory and is registered as a Civil Engineer in the State of California. The report shall include, as a minimum, the following information for each set: contract number, bridge number, lot number and location, bar size, type of splice, length of mechanical splice, physical condition of test sample splice and control bar, any notable defects, limits of affected zone, total measured slip, location of visible necking area, ultimate strength of each splice, ultimate strength and 95 percent of this ultimate strength for each control bar, and a comparison between 95 percent of the ultimate strength of each control bar and the ultimate strength of its associated splice. The QCM must review, approve, and forward each Production Test Report to the Engineer for review before any splices represented by the report are encased in concrete. The Engineer shall have 3 working days to review each Production Test Report and respond in writing after a complete report has been received. Should the Contractor elect to encase any splices prior to receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the Contractor's responsibility for incorporating material in the work that conforms to the requirements of the
plans and specifications. Any material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase any splices pending notification by the Engineer, and should the Engineer fail to complete the review and provide notification within this time allowance, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in notification, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Prior to performing any tensile tests on production test sample splices, one of the 4 samples shall be tested for, and shall conform to, the provisions for total slip. Should this sample not meet these requirements, one retest, in which the 3 remaining samples are tested for total slip, will be allowed. Should any of the 3 remaining samples not conform to these requirements, all splices in the lot represented by this production test will be rejected. If 3 or more sample splices from any production test conform to the provisions in "Ultimate Butt Splice Test Criteria" specified herein, all splices in the lot represented by this production test will be considered acceptable. Should only 2 sample splices from any production test conform to the provisions in "Ultimate Butt Splice Test Criteria" specified herein, one additional production test shall be performed on the same lot of splices. Should any of the 4 sample splices from this additional test fail to conform to these provisions, all splices in the lot represented by these production tests will be rejected. If only one sample splice from any production test conforms to the provisions in "Ultimate Butt Splice Test Criteria" specified herein, all splices in the lot represented by this production test will be rejected. If a production test for any lot fails, the Contractor will be required to repair or replace all reinforcing bars from which sample splices were removed, complete in place, before the Engineer selects any additional splices from this lot for further testing. Whenever any lot of ultimate butt splices is rejected, additional ultimate butt splices shall not be used in the work until 1) the QCM performs a complete review of the Contractor's quality control process for these splices, 2) a written report is submitted to the Engineer describing the cause of failure for the splices in this lot and provisions for correcting these failures in future lots, and 3) the Engineer has provided the Contractor with written notification that the report is acceptable. The Engineer shall have 3 working days after receipt of the report to provide notification to the Contractor. Should the Engineer not provide notification within this time allowance, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of this action, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Production tests will not be required on any repaired splice from a lot, regardless of the type of prequalified ultimate mechanical butt splice used to make the repair. Should an additional production test be required, the Engineer may select any repaired splice for use in the additional production test. #### **Quality Assurance Test Requirements for Ultimate Butt Splices** For the first production test performed, and for at least one, randomly selected by the Engineer, of every 5 additional production tests, or portion thereof, performed thereafter, the Contractor shall concurrently prepare 4 additional ultimate job control sample splices along with associated control bars. These ultimate job control samples shall be prepared in the same manner as specified herein for ultimate prejob sample splices and control bars. Each time 4 additional ultimate job control sample splices are prepared, 2 of these job control sample splice and associated control bar sets and 2 of the production sample splice and associated control bar sets, together, shall conform to the requirements for ultimate production sample splices in "Production Test Requirements for Ultimate Butt Splices" specified herein. The 2 remaining job control sample splice and associated control bar sets, along with the 2 remaining production sample splice and associated control bar sets shall be shipped, unless otherwise directed in writing by the Engineer, to the Transportation Laboratory for quality assurance testing. The 4 sets shall be securely bundled together and identified by location and contract number with weatherproof markings prior to shipment. Bundles containing fewer than 4 sets will not be tested. Quality assurance testing will be performed in conformance with the requirements for ultimate production sample splices in "Production Test Requirements for Ultimate Butt Splices" specified herein. Test results for each bundle of 4 sets will be reported in writing to the Contractor within 3 working days after receipt of the bundle by Transportation Laboratory. In the event that more than one bundle is received on the same day, 2 additional working days shall be allowed for providing test results for each additional bundle received. A test report will be made for each bundle received. Should the Contractor elect to encase any splices prior to receiving notification from the Engineer, it is expressly understood that the Contractor will not be relieved of the Contractor's responsibility for incorporating material in the work that conforms to the requirements of the plans and specifications. Any material not conforming to these requirements will be subject to rejection. Should the Contractor elect to wait to encase any splices pending notification by the Engineer, and should the Engineer fail to complete the review and provide notification within this time allowance, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in notification, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. ### MEASUREMENT AND PAYMENT Measurement and payment for reinforcement in structures shall conform to the provisions in Section 52-1.10, "Measurement," and Section 52-1.11, "Payment," of the Standard Specifications and these special provisions. Full compensation for conforming to the provisions of "Ultimate Butt Splices," of these special provisions shall be considered as included in the contract prices paid for the various contract items of work involved and no additional compensation will be allowed therefor. ### **10-1.35 SHOTCRETE** Shotcrete shall conform to the provisions in Section 51, "Concrete Structures," and Section 53, "Shotcrete," of the Standard Specifications and these special provisions. Shotcrete operations shall completely encase all reinforcement and other obstructions shown on the plans. Exceptional care shall be taken to properly encase the reinforcement and other obstructions with shotcrete. Attention is directed to the section, "Order of Work," in these special provisions regarding furnishing preconstruction shotcrete test panels. Except for finish coats, shotcrete shall be applied by the wet-mix process only. Finish coats, applied by the dry-mix process, may be used only when approved by the Engineer. Shotcrete shall have a minimum compressive strength of 22.5 MPa at 28 days or as shown on the plans, whichever is greater. No shotcrete work shall be performed prior to verification by the Engineer of the required compressive strength. Splicing of reinforcing bars No. 22 or larger in shotcrete shall be by butt splicing only. The Contractor shall be responsible for obtaining and testing all required preconstruction and production test cores. All coring and testing shall be at the Contractor's expense and performed in the presence of the Engineer, unless otherwise directed. The Engineer shall be notified a minimum of 24 hours prior to the Contractor performing any coring or testing operations. All cores shall be obtained and tested for compressive strength in conformance with the requirements in ASTM Designation: C 42. Cores used for determining compressive strength shall not contain any bar reinforcement or other obstructions. The testing shall be performed at an independent testing facility approved by the Engineer. A copy of the test results shall be furnished to the Engineer within 5 days following completion of testing. All test panels shall become the property of the Contractor and shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. # PRECONSTRUCTION REQUIREMENTS Prior to performing shotcrete work, the Contractor shall construct at least 2 preconstruction shotcrete test panels for each mixture being considered unless otherwise specified. The nozzleperson shall have a minimum of 3000 hours experience as a nozzleperson on projects with a similar application. At least 10 working days prior to constructing any shotcrete test panels, the Contractor shall submit to the Engineer for approval, a Quality Control Plan (QCP) for the proposed method of shotcrete placement. The plan shall include the following: - A. The number and qualifications of nozzlepersons available to place shotcrete, the number of nozzlepersons on-site at any time during the shotcrete placement, description of their work schedule, and the procedures for avoiding fatigue of any nozzleperson. - B. The proposed method of placing shotcrete, including, but not limited to, application rates, details of any proposed construction joints and their locations, and methods for achieving the required thickness and surface
finish. - C. The procedure for curing shotcrete surfaces. D. The description of a debris containment system, to be used during the cleaning of bar reinforcing steel and concrete and placing of shotcrete, as required to provide for public safety. The Engineer shall have 10 working days to review and approve the QCP submittal after a complete plan has been received. No construction of shotcrete test panels shall be performed until the QCP is approved by the Engineer. Should the Engineer fail to complete the review within this time allowance, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in approving the QCP, the delay will be considered a right of way delay in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. Preconstruction shotcrete test panels shall be constructed by the nozzlepersons and application crew scheduled to do the work, using equipment, materials, mixing proportions, ambient temperatures and procedures proposed for the work. The preconstruction shotcrete test panels shall conform to the following: - A. One shotcrete test panel, of the size determined by the Contractor, shall be unreinforced and shall have 3 cores taken from it and tested for compressive strength. The compressive strength shall be the average strength of the 3 cores, except that, if any core should show evidence of improper coring, the core shall be discarded and the compressive strength shall be the average strength of the remaining cores. The test panel shall be identified and submitted to the Engineer with the test results including a description of the mixture, proportions, and ambient temperature. - B. One shotcrete test panel shall have the same (1) thickness, (2) bar size and amount of bar reinforcement or other obstructions and (3) positioning of bar reinforcement or obstructions as the most heavily reinforced section of shotcrete to be placed. The test panel shall be square with the length of the sides equal to at least 3 times the thickness of the most heavily reinforced section of shotcrete to be placed, but not less than 750 mm. After a minimum 7 days of cure, the test panel shall be broken by the Contractor, in the presence of the Engineer, into pieces no larger than 250 mm in greatest dimension. The surfaces of the broken pieces shall be dense and free of laminations and sand pockets, and shall verify that the bar reinforcement or other obstructions are completely encased. - C. Both test panels shall be cured under conditions similar to the actual work. - D. At the option of the Contractor, cores to be used for determining the compressive strength may be taken from the reinforced test panel described above in lieu of making a separate unreinforced test panel as described above. The compressive strength shall be the average strength of the 3 cores, except that, if any core should show evidence of improper coring or contains bar reinforcement or other obstructions, the core shall be discarded and the compressive strength shall be the average strength of the remaining cores. If cores are taken from the reinforced test panel, the panel shall not be broken into pieces, as described above, until it has cured for a minimum of 14 days. The requirements for constructing preconstruction shotcrete test panels may be eliminated, when approved by the Engineer, if a test panel report and certified compressive strength test data are furnished from a State highway project with a similar application of approximately equal thickness, including similar amounts and placement of reinforcement or other obstructions. The nozzle person, proposed to be used, shall have constructed the test panel described in the test panel report. The test panel report shall list the names of the application crew, equipment used, materials, mixing proportions, ambient temperatures and procedures used to make the test panels. The certified compressive strength test data shall be for cores taken from the same test panels. ## **PLACING** An air blowpipe shall be used during shotcrete placement to remove rebound, overspray and other debris from the areas to receive shotcrete. Construction joints shall be tapered, and shall conform to the provisions in Sections 51-1.13, "Bonding," of the Standard Specifications. All overspray and rebound shall be removed prior to final set and before placement of shotcrete on adjacent surfaces. Rebound or any other material which has already exited the nozzle shall not be reused. Shotcrete shall be cured in conformance with the provisions of Section 90-7.03, "Curing Structures," of the Standard Specifications. When a finish coat is to be used, all loose, uneven or excess material, glaze, and rebound shall be removed by brooming, scraping, or other means and the surface left scarified. Any surface deposits which take a final set shall be removed by abrasive blasting. Prior to placing the finish coat, the receiving surface shall be washed down with an air-water blast. Shotcrete extending into the space shown on the plans for cast-in-place concrete shall be removed. ### TESTING AND ACCEPTANCE At least 3 production shotcrete test cores shall be taken from each 30 square meters or portion thereof of shotcrete placed each day. The cores shall be 76 mm in diameter. The location where cores are to be taken will be designated by the Engineer. Test cores shall be identified by the Contractor and a description of the core location and mixture, including proportions, shall be submitted to the Engineer with the test cores, immediately after coring. Cored holes shall be filled with mortar in conformance with the provisions in Section 51-1.135, "Mortar," of the Standard Specifications. Upon receipt of the cores, the Engineer will perform a visual examination to determine acceptance, as described below. Within 48 hours after receipt, the Engineer will return the cores to the Contractor for compressive strength testing. The compressive strength test shall be performed using the shotcrete production test cores described above. The compressive strength shall be the average strength of the 3 cores, except that, if any core should show evidence of improper coring, the core shall be discarded and the compressive strength shall be the average strength of the remaining cores. The basis of acceptance for production shotcrete test cores shall be (1) that the core is dense and free of laminations and sand pockets, and shows that the reinforcement or other obstructions are completely encased and (2) the same as specified for test cylinders in the fourth and fifth paragraphs of Section 90-9.01, "General," of the Standard Specifications. If any production test core shows signs of defective shotcrete as described in (1) above, the shotcrete represented by such test core will be rejected, unless the Contractor, at the Contractor's expense, obtains and submits evidence acceptable to the Engineer that the strength and quality of the shotcrete placed in the work are acceptable. The surface finish of the shotcrete shall conform to the provisions of Section 51-1.18, "Surface Finishes," of the Standard Specifications. ### MEASUREMENT AND PAYMENT Full compensation for the Quality Control Plan, constructing and breaking test panels, furnishing and testing cores and patching cored holes shall be considered as included in the contract price paid per cubic meter for shotcrete and no additional compensation will be allowed therefor. ### 10-1.36 PREPARE AND STAIN CONCRETE This work shall consist of preparing and staining the concrete surfaces which are designated on the plans to be stained. After completion of the class of concrete surface finish in conformance with the provisions in Section 51, "Concrete Structures," of the Standard Specifications, the surfaces of the concrete to be stained shall be prepared by a light abrasive blasting of the surface as necessary to remove any remaining form oil or other contaminants. The concrete surface shall be thoroughly dry at the time stain is applied. The stain shall be of the Vinyl-Chloride Co-Polymer Resin Base Type which has been commercially manufactured for use as an exterior concrete stain. The stain shall be formulated and applied so that the color of the stained concrete closely conforms to Color No. 30219 of Federal Standard No. 595B. The stain shall be applied in not less than 2 coats at a rate necessary to produce a uniform color. Each coat shall be thoroughly cured before the succeeding coat is applied. Areas not to be stained shall be protected so that they remain stain-free. Preparing and staining concrete will be measured by the square meter. Measurement will be made along the surface of the actual areas stained. The contract price paid per square meter for prepare and stain concrete shall include full compensation for furnishing all labor, materials, tools, equipment, and incidentals, and for doing all work involved in preparing surfaces and applying stain to concrete surfaces, as shown on the plans, as specified in these specifications, and as directed by the Engineer. ## 10-1.37 SLOPE PAVING Slopes, where shown on the plans, shall be paved in conformance with the provisions in Section 72-6, "Slope Paving," of the Standard Specifications and these special provisions. Prior to placing the permanent slope paving, the Contractor shall construct a test panel at least 1.2 m by 1.8 m at the site for approval by the Engineer. The test panel shall be constructed of the same materials as are proposed for the permanent work and shall be finished and cured as specified for the permanent work. Additional test panels shall be constructed as necessary until a panel is produced which conforms to the requirements herein, before constructing other slope paving. ## 10-1.38 MISCELLANEOUS IRON AND STEEL Miscellaneous iron and steel shall conform to the provisions in Section 75, "Miscellaneous
Metal," of the Standard Specifications. ### 10-1.39 MARKERS AND DELINEATORS Markers and delineators shall conform to the provisions in Section 82, "Markers and Delineators," of the Standard Specifications and these special provisions. Markers and delineators on flexible posts shall conform to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Flexible posts shall be made from a flexible white plastic which shall be resistant to impact, ultraviolet light, ozone, and hydrocarbons. Flexible posts shall resist stiffening with age and shall be free of burns, discoloration, contamination, and other objectionable marks or defects which affect appearance or serviceability. Retroreflective sheeting for metal and flexible target plates shall be the retroreflective sheeting designated for channelizers, markers, and delineators conforming to the requirements in ASTM Designation: D 4956-95 and in conformance with the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions. Guard railing delineators shall be attached to the guard railing in accordance with the manufacturer's recommendations. ### 10-1.40 METAL BEAM GUARD RAILING Metal beam guard railing shall be constructed in conformance with the provisions in Section 83-1, "Railings," of the Standard Specifications and these special provisions. Attention is directed to "Order of Work" of these special provisions. Line posts and blocks shall be wood. Delete the ninth and eleventh paragraphs in Section 83-1.02B, "Metal Beam Guard Railing," of the Standard Specifications. The grades and species of wood posts and blocks shall be No. 1 timbers (also known as No. 1 structural) Douglas fir or No. 1 timbers Southern yellow pine. Wood posts and blocks shall be graded in conformance with the provisions in Section 57-2, "Structural Timber," of the Standard Specifications, except allowances for shrinkage after mill cutting shall in no case exceed 5 percent of the American Lumber Standards minimum sizes, at the time of installation. Wood posts and blocks shall be pressure treated after fabrication in conformance with the provisions in Section 58, "Preservative Treatment of Lumber, Timber and Piling," of the Standard Specifications with creosote, creosote coal tar solution, creosote petroleum solution (50-50), pentachlorophenol in hydrocarbon solvent, copper naphthenate, ammoniacal copper arsenate, or ammoniacal copper zinc arsenate. In addition to the preservatives listed above, Southern yellow pine may also be pressure treated with chromated copper arsenate. When other than one of the creosote processes is used, blocks shall have a minimum retention of 6.4 Kg/m³, and need not be incised. ## TERMINAL SYSTEM (TYPE SRT) Terminal system (Type SRT) shall be furnished and installed as shown on the plans and in conformance with these special provisions. Terminal system (Type SRT) shall be a SRT-350 Slotted Rail Terminal (8 post system) as manufactured by Trinity Industries, Inc., and shall include all the items detailed for terminal system (Type SRT) shown on the plans. The 5 mm x 44 mm x 75 mm plate washer shown on the elevation view and in Section D-D at Wood Post No. 1 shall be omitted. Arrangements have been made to insure that any successful bidder can obtain the SRT-350 Slotted Rail Terminal (8 post system) from the manufacturer, Trinity Industries, Inc., P.O. Box 99, 950 West 400S, Centerville, UT 84014, Telephone 1-800-772-7976. The price quoted by the manufacturer for the SRT-350 Slotted Rail Terminal (8 post system), FOB Centerville, Utah is \$845.00, not including sales tax. The above price will be firm for orders placed on or before July, 31 2003, provided delivery is accepted within 90 days after the order is placed. The Contractor shall provide the Engineer with a Certificate of Compliance from the manufacturer in conformance with the provisions in Section 6-1.07, "Certificates of Compliance," of the Standard Specifications. The Certificate of Compliance shall certify that terminal systems (Type SRT) conform to the contract plans and specifications, conform to the prequalified design and material requirements and were manufactured in conformance with the approved quality control program. The terminal system (Type SRT) shall be installed in conformance with the manufacturer's installation instructions and these requirements. The steel foundation tubes with soil plates attached, shall be, at the Contractor's option, either driven, with or without pilot holes, or placed in drilled holes. Space around the steel foundation tubes shall be backfilled with selected earth, free of rock, placed in layers approximately 100 mm thick and each layer shall be moistened and thoroughly compacted. Wood terminal posts shall be inserted into the steel foundation tubes by hand. Before the wood terminal posts are inserted, the inside surfaces of the steel foundation tubes to receive the wood posts shall be coated with a grease which will not melt or run at a temperature of 65°C or less. The edges of the wood terminal posts may be slightly rounded to facilitate insertion of the post into the steel foundation tubes. Surplus excavated material remaining after the terminal system (Type SRT) has been constructed shall be disposed of in a uniform manner along the adjacent roadway where designated by the Engineer. ### 10-1.41 CONCRETE BARRIER Concrete barriers shall conform to the provisions in Section 83-2, "Barriers," of the Standard Specifications and these special provisions. Type 25A concrete barriers will be measured and paid for as concrete barrier (Type 25). Type 732A concrete barriers will be measured and paid for as concrete barrier (Type 732). ## 10-1.42 THERMOPLASTIC TRAFFIC STRIPE Thermoplastic traffic stripes (traffic lines) shall be applied in conformance with the provisions in Section 84, "Traffic Stripes and Pavement Markings," of the Standard Specifications and these special provisions. Where striping joins existing striping, as shown on the plans, the Contractor shall begin and end the transition from the existing striping pattern into or from the new striping pattern a sufficient distance to ensure continuity of the striping pattern. Thermoplastic material for traffic stripes shall be applied at a minimum thickness of 2.0 mm. At the option of the Contractor, permanent traffic striping and pavement marking tape conforming to the provisions in "Prequalified and Tested Signing and Delineation Materials" of these special provisions may be placed instead of the thermoplastic traffic stripes specified herein. Permanent tape, if used, shall be installed in conformance with the manufacturer's specifications. If permanent tape is placed instead of thermoplastic traffic stripes, the tape will be measured and paid for by the meter as thermoplastic traffic stripe and by the square meter as thermoplastic pavement marking. #### 10-1.43 PAVEMENT MARKERS Pavement markers shall be placed in conformance with the provisions in Section 85, "Pavement Markers," of the Standard Specifications and these special provisions. Attention is directed to "Traffic Control System For Lane Closure" of these special provisions regarding the use of moving lane closures during placement of pavement markers with bituminous adhesive. Retroreflective pavement markers shall comply with the specific intensity provisions for reflectance after abrading the lens surface in conformance with the "Steel Wool Abrasion Procedure" specified for pavement markers placed in pavement recesses in Section 85-1.05, "Retroreflective Pavement Markers," of the Standard Specifications. ## **SECTION 10-2. HIGHWAY PLANTING** ### **10-2.01 GENERAL** The work performed in connection with highway planting shall conform to the provisions in Section 20, "Erosion Control and Highway Planting," of the Standard Specifications and these special provisions. ## 10-2.02 EXISTING HIGHWAY PLANTING In addition to the provisions in Section 20 of the Standard Specifications, work performed in connection with existing highway planting shall be in conformance with the provisions in Section 15, "Existing Highway Facilities," of the Standard Specifications and these special provisions. Replacement planting shall conform to the requirements specified under "Preservation of Property" of these special provisions. ## PRUNE EXISTING PLANTS Existing plants, as determined by the Engineer, shall be pruned. Pruning of the existing plants, except as otherwise provided in these special provisions, will be paid for as extra work as provided in Section 4-1.03D of the Standard Specifications. ## SECTION 10-3. SIGNALS, LIGHTING AND ELECTRICAL SYSTEMS ## 10-3.01 DESCRIPTION Fifty millimeter conduit where shown on the plans shall conform to the provisions in Section 86, "Signals, Lighting and Electrical Systems," of the Standard Specifications.